idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
02/12/2014 15:27

Wenn Elektronen in verschiedenen Ligen spielen

Klaus P. Prem Presse - Öffentlichkeitsarbeit - Information
Universität Augsburg

    Vom Charakter der Orbitale bedingte Klassenunterschiede zwischen den Elektronen weisen möglichen Weg zur Erhöhung der Sprungtemperatur bei eisenbasierten Hochtemperatursupraleitern

    Augsburg/JD/KPP - Wenn Elektronen in verschiedenen Ligen spielen, dann kann die Art, wie sie zusammenspielen und miteinander wechselwirken, sehr unterschiedlich sein. Über einen solchen Klassenunterschied zwischen den Elektronen in einem eisenbasierten Hochtemperatursupraleiter, der dafür verantwortlich ist, dass Vorboten der Supraleitfähigkeit in diesem Material bereits weit oberhalb der kritischen Sprungtemperatur auftreten, berichtet ein Team von Forschern des Zentrums für Elektronische Korrelationen und Magnetismus (EKM) der Universität Augsburg und der Moldawischen Akademie der Wissenschaften in einem Beitrag im renommierten Wissenschaftsjournal "Nature Communications". Die Breite der Anwendungsmöglichkeiten dieser Materialien könnte von einer Steigerung ihrer Sprungtemperatur durch Ausnutzung dieses Klassenunterschieds profitieren.

    Auf die Orbitale kommt es an

    Seit ihrer Entdeckung im Jahr 2008 zeigt sich die Familie der eisenbasierten Supraleiter immer wieder gut für Überraschungen. So können in diesen Materialien die Elektronen sowohl sogenannte Cooper-Paare - als Voraussetzung für Supraleitfähigkeit - bilden als auch zum Magnetismus beitragen. Dies ist zwar auch bei der bereits länger bekannten Klasse der Kupferoxid-Hochtemperatursupraleiter der Fall, aber in den eisenbasierten Materialien unterscheiden sich die Elektronen untereinander in ihrem orbitalen Charakter. Und je nach der Ausprägung ihres orbitalen Charakters sind die einen Elektronen bereits bei Raumtemperatur metallisch, während die anderen hier noch isolierendes Verhalten zeigen, um erst bei tiefen Temperaturen ebenfalls metallischen Charakter anzunehmen. Dieser außergewöhnliche, weil orbitalabhängige Metall-Isolator-Übergang, der im Experiment beobachtet werden konnte, macht die wichtige Rolle der orbitalen Eigenschaften der Elektronen für das theoretische Verständnis der eisenbasierten Supraleiter deutlich.

    Eine zweite Energielücke weit oberhalb der kritischen Sprungtemperatur

    "Wir konnten nun beobachten, dass es die Symmetrieeigenschaften ihrer Orbitale sind, die bestimmen, bei welchen Temperaturen welche Elektronen jene sogenannten Cooper-Paare bilden, die nötig sind, um den supraleitenden Zustand zu erreichen", so Dr. Joachim Deisenhofer vom Augsburger Institut für Physik. Zu dieser Beobachtung verhalf optische Spektroskopie im Terahertz-Frequenzbereich. Denn die Energie, die erforderlich ist, um die Bindung der für die Supraleitfähigkeit verantwortlichen Cooper-Paarungen aufzubrechen, zeigt sich im optischen Spektrum in Form einer sogenannten Anregungs- oder Energielücke, die unterhalb der kritischen Sprungtemperatur sichtbar wird. In dem von ihnen untersuchten eisenbasierten Supraleiter Rb1-xFe2-ySe2 konnten die Augsburger EKM-Physiker und ihre Kollegen von der Moldawischen Akademie der Wissenschaften nun aber das Auftreten einer zweiten solchen Energielücke bereits weit oberhalb der Sprungtemperatur beobachten und die bereits bei dieser hohen Temperatur eintretenden Cooper-Paarungen jener Rb1-xFe2-ySe2-Elektronen-"Liga" zuordnen, deren orbitaler Charakter auch den außergewöhnlichen Metall-Isolator-Übergang dieser Materialfamilie bewirkt.

    Breiteres Anwendungsspektrum durch Erhöhung der Sprungtemperatur

    "Sollte es gelingen, die in eisenbasierten Supraleitern in dieser 'Liga' spielenden Elektronen die Leitfähigkeit des Materials dominieren zu lassen", resümiert Deisenhofer, "könnte dies eine weitere Erhöhung der Sprungtemperaturen der eisenbasierten Supraleiter und eine Erweiterung ihrer Anwendungsmöglichkeiten ermöglichen".
    _______________________________________

    Originalbeitrag:

    Zhe Wang, Michael Schmidt, Jonas Fischer, Vladimir Tsurkan, Markus Greger, Dieter Vollhardt, Alois Loidl & J. Deisenhofer: " Orbital-selective metal–insulator transition and gap formation above TC in superconducting Rb1-xFe2-ySe2"

    http://www.nature.com/ncomms/2014/140128/ncomms4202/abs/ncomms4202.html
    _______________________________________

    Ansprechpartner:

    Dr. Joachim Deisenhofer
    Telefon +49(0)821/598-3391, joachim.deisenhofer@physik.uni-augsburg.de

    Prof. Dr. Alois Loidl
    Telefon +49(0)821/598-3600, alois.loidl@physik.uni-augsburg.de

    Prof. Dr. Dieter Vollhardt
    Telefon +49(0)821/598-3700, dieter.vollhardt@physik.uni-augsburg.de


    Images

    Criteria of this press release:
    Journalists, Scientists and scholars
    Materials sciences, Physics / astronomy
    transregional, national
    Research results
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).