- Embargo: Mittwoch, 07.05.2014, 19:00 MEZ -
Neue Computersimulation zeigt die Entstehung von Galaxien mit bisher nicht erreichter Präzision. Astrophysiker aus Heidelberg, den USA und England bestätigen damit indirekt das Standardmodell der Kosmologie.
Galaxien enthalten typischerweise einige hundert Milliarden Sterne und zeigen vielfältige Formen und Größen. Ihre Entstehungsgeschichte ist eines der größten und komplexesten Probleme in der Astrophysik. Wissenschaftlern am Heidelberger Institut für Theoretische Studien (HITS) ist es nun zusammen mit einem internationalem Team von Forschern am MIT, der Harvard University und weiteren Institutionen gelungen, die Physik der Galaxienentstehung in einem riesigen Raumbereich mit sehr hoher Genauigkeit zu simulieren. Im Fachjournal Nature berichten sie, dass dabei erstmals ein realistischer Mix aus elliptischen Galaxien und Spiralgalaxien entstand. Die Simulation kann auch erklären, wie sich schwere Elemente (sogenannte „Metalle“) in neutralem Wasserstoffgas anreichern. Zudem sind die berechneten Galaxien im Raum so verteilt, wie es mit Teleskopen beobachtet wird. Die Datenmenge des „Illustris“ genannten Projekts umfasst mehr als 200 Terabyte und erforderte die Rechenkraft von mehr als 8000 Prozessoren für mehrere Monate. Möglich wurde die Simulation durch den am HITS entwickelten AREPO-Code für kosmische Strukturentstehung und die Supercomputer CURIE in Frankreich und SuperMUC in Deutschland. Das von den Forschern erzeugte virtuelle Universum erlaubt eine Vielzahl neuartiger Voraussagen und damit eine umfassende Prüfung der kosmologischen Theorien zur Galaxienentstehung.
Das kosmologische Standardmodell basiert auf der Hypothese, dass das Universum von unbekannten Materie- und Energieformen dominiert wird. Zwar kennen wir die wahre physikalische Natur dieser Dunklen Materie und Dunklen Energie noch nicht, dennoch kann man ihre Konsequenzen mit Supercomputern nachvollziehen. Bisherige Simulationen des Kosmos erzeugten dabei ein kosmisches Netz aus Materieklumpen, das der Verteilung der Galaxien zumindest ähnelte. Sie konnten aber keine elliptischen und Spiralgalaxien schaffen und die eng verzahnte Entwicklung von interstellarem Gas und den Sternen auf kleinen Skalen nachvollziehen. In dem ambitionierten „Illustris-Projekt“ sind die Kosmologen bei diesem Problem nun ein großes Stück weiter gekommen.
In der weltweit größten hydrodynamischen Simulation der Galaxienentstehung wurde eine Region mit einer Ausdehnung von etwa 350 Millionen Lichtjahren über einen Zeitraum von über 13 Milliarden Jahren verfolgt, beginnend 12 Millionen Jahre nach dem Urknall. Über diesen Zeitraum bilden sich aus der „Ursuppe“ aus Wasserstoff, Heliumgas und Dunkler Materie mit der Zeit immer größere Verklumpungen, zusammengetrieben durch die Wirkung der Schwerkraft. Schließlich formen sich galaktische Sternsysteme, deren Wachstum durch ein komplexes Zusammenspiel von Strahlungsprozessen, hydrodynamischen Stoßwellen, turbulenten Strömungen, Sternentstehung, Supernova-Explosionen und der Energieeinspeisung wachsender superschwerer Schwarzer Löcher reguliert wird. Alle diese physikalischen Prozesse konnte das Illustris-Team in seiner neuen Supercomputer-Simulation mit dem Code AREPO berechnen. AREPO ist ein sogenannter „moving mesh code“, der das simulierte Universum nicht in ein starres Gitter einteilt, sondern bewegliche und veränderliche Gitter verwendet und so die Größen- und Masseunterschiede zwischen den einzelnen Galaxien besonders genau verarbeiten kann.
Die Hauptsimulation des Projekts hat dabei mehr als 18 Milliarden Teilchen und Zellen eingesetzt und überbrückt einen dynamischen Bereich von mehr als einer Million pro Raumdimension – um ähnlich kleine Details darzustellen, müsste ein Foto eine Million Megapixel groß sein. Der Speicherverbrauch der Illustris-Simulation von mehr als 25 Terabyte und das erzeugte Datenvolumen von mehr als 200 Terabyte setzen in der Kosmologie eine neue Rekordmarke. Diese Datenflut erlaubt es, die Entstehungsgeschichte von etwa 50.000 gut aufgelösten Galaxien im Detail zu studieren und theoretische Voraussagen für kosmische Strukturentstehung mit hoher Genauigkeit zu machen.
Die jahrelangen Vorbereitungen auf die Simulationen haben sich gelohnt: Erstmals kann das berühmte „Stimmgabel-Diagramm“ der Morphologie von Galaxien, das auf Edwin Hubble zurückgeht, reproduziert werden (siehe Abbildung 1). Dr. Mark Vogelsberger (MIT), Erstautor der in Nature erschienenen ersten Studie zu Illustris, meint: „Es ist bemerkenswert, dass die Anfangsbedingungen des Universums, die wir kurz nach dem Urknall beobachten, tatsächlich Galaxien von der richtigen Größe und Gestalt hervorbringen.“ Indirekt kann das als eine Bestätigung des Standardmodells der Kosmologie angesehen werden. „Endlich können wir die alten groben Modelle der Galaxienentstehung hinter uns lassen und nicht nur die Dunkle Materie präzise berechnen“, freut sich Prof. Volker Springel, Leiter der Forschungsgruppe „Theoretical Astrophysics“ am HITS und Autor des AREPO-Codes, und ergänzt: „Die Ergebnisse von Illustris markieren einen Umbruch in theoretischen Studien der Galaxienentstehung.“ Abbildung 2 zeigt einen Überblick über die astrophysikalischen Größen, die von diesem „Universum im Supercomputer“ vorausgesagt werden.
Pressekontakt:
Dr. Peter Saueressig
Public Relations
Heidelberger Institut für Theoretische Studien (HITS)
Tel.: +49-6221-533-245
Fax: +49-6221-533-298
peter.saueressig@h-its.org
www.h-its.org
Wissenschaftlicher Kontakt:
Prof. Dr. Volker Springel
Heidelberger Institut für Theoretische Studien (HITS) / Universität Heidelberg
Tel: +49-6221-533-241
volker.springel@h-its.org
www.h-its.org
Die wissenschaftliche Veröffentlichung im Original:
M. Vogelsberger, S. Genel, V. Springel, P. Torrey, D. Sijacki, D. Xu, G. Snyder, S. Bird, D. Nelson, L. Hernquist
“Properties of galaxies reproduced by a hydrodynamic simulation”, Nature, May 8th, 2014, doi:10.1038/nature13316
Weiterführende Links:
Web-Site des Illustris Projekts (mit weiteren Visualisierungen): http://www.illustris-project.org
Gauss Centre for Supercomputing http://www.gauss-centre.eu
SuperMUC am Leibniz Rechenzentrum http://www.lrz.de/services/compute/supermuc
AREPO-Code (V. Springel, 2010, MNRAS, 401, 791 http://mnras.oxfordjournals.org/content/401/2/791.full.pdf+html
http://www.h-its.org/deutsch/presse/pressemitteilungen.php?we_objectID=1079 HITS-Pressemitteilung
http://www.illustris-project.org Website des Illustris-Projekts mit weiterem Bild- und Videomaterial
Verschiedene Ansichten der Illustris-Simulation auf unterschiedlichen Skalen. Den AREPO-Code für die ...
Bild: Illustris
None
Bilder der simulierten Population von Galaxien, die entlang der klassischen Hubble-Sequenz („Stimmga ...
Bild: Illustris
None
Criteria of this press release:
Journalists, Scientists and scholars
Information technology, Physics / astronomy
transregional, national
Research results
German
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).