idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
07/17/2014 12:51

Elektronen-Spins unter Strom – Neues Verfahren zur Bestimmung der Spin-Bahn-Wechselwirkung

Alexander Schlaak Referat II/2, Kommunikation
Universität Regensburg

    Ein internationales Forscherteam der Universitäten in Regensburg und Sendai (Japan) hat ein neues Verfahren entwickelt, um die Stärke der Spin-Bahn-Wechselwirkung in Halbleitern zu bestimmen. Die Spin-Bahn-Wechselwirkung ist die Kraft, die auf den Spin – den Eigendrehimpuls von Elektronen – einwirkt. Die Kontrolle dieser Kraft ist von zentraler Bedeutung für die Entwicklung einer Spinelektronik, die in Zukunft die Wirkungsweise von Transistoren revolutionieren könnte. Die Ergebnisse der Forscher wurden vor wenigen Tagen in der Fachzeitschrift „Nature Nanotechnology“ veröffentlicht (DOI 10.1038/nnano.2014.128).

    In herkömmlichen Transistoren nutzt man ausschließlich die Ladung von Elektronen, um den Stromfluss zu kontrollieren und auf diese Weise logische Operationen auszuführen. Dem gegenüber versucht man in der Spinelektronik, auch den Eigendrehimpuls der Elektronen – ihren Spin – zu nutzen, indem man die Spineigenschaften der Elektronen manipuliert. Der Elektronen-Spin kann als Pirouette des Elementarteilchens um die eigene Achse verstanden werden, wobei die Bewegung mit einem magnetischen Moment verknüpft ist. Demnach weist das Elektron Eigenschaften ähnlich einer Kompassnadel auf. Die Quantenphysik lässt bei dieser winzigen Kompassnadel allerdings nur zwei Ausrichtungen – parallel (spin-up) oder anti-parallel (spin-down) zum Magnetfeld – zu.

    In Halbleitern ergeben sich nochmals besondere Bedingungen: Hier unterliegen Elektronen wegen der Krsitallgitterstruktur der Halbleiter oder aufgrund einer von außen angelegten elektrischen Spannung dem Einfluss von elektrischen Feldern. Die elektrischen Felder wirken wiederum auf die sich bewegenden Elektronen-Spins wie Magnetfelder, an denen sich diese ausrichten (Spin-Bahn-Felder). Die damit verbundene Kraft wird deshalb auch als Spin-Bahn-Wechselwirkung bezeichnet. Für die Forschung eröffnet dies die Möglichkeit, die Elektronen-Spins in einem eigentlich nicht-magnetischen Halbleiter über „effektive“ Magnetfelder zu kontrollieren oder zu beeinflussen.

    Vor diesem Hintergrund hat das Forscherteam um Prof. Dr. Klaus Richter vom Institut für Theoretische Physik der Universität Regensburg in Kooperation mit Experimentalphysikern um Prof. Dr. Junsaku Nitta von der Tohoku University in Sendai (Japan) eine Methode entwickelt, um die jeweilige Spin-Bahn-Wechselwirkung und die damit verknüpften Magnetfelder näher zu bestimmen. Ausgangspunkt war die Idee, die Elektronen in ultradünnen Drähte mit einem Querschnitt von etwa 10 nm mal 700 nm – gewissermaßen entlang einer Linie – einzusperren. Die damit erzwungene, praktisch eindimensionale Bewegung der Elektronen führt dazu, dass die Magnetfelder eine spezifische Ausrichtung annehmen, die auf die Stärke der Spin-Bahn-Wechselwirkungen rückschließen lässt.

    Spin-Bahn-Felder sind für eine Halbleiter-basierte Spinelektronik Fluch und Segen zugleich: Sie erlauben zum einen die Steuerung und Kontrolle der Spinausrichtung, können aber andererseits auch dazu führen, dass eine ursprüngliche Spinpolarisation der Ladungsträger durch die Felder zunichte gemacht wird. Daher kann es von Vor¬teil sein, die Wirkung der Spin-Bahn-Felder zu minimieren und im besten Fall gänzlich „auszuschalten“. Das ist möglich, wenn sich die beiden Ursachen, die Kristallgittereffekte von Halbleitern und die Felder durch eine von außen angelegte Spannung, in ihrer Wirkung gegenseitig aufheben. Das Team aus Regensburg und Sendai konnte nachweisen, dass dies durch ein geschicktes Justieren der externen Spannung möglich ist. Das Resultat ist eine maßgeschneiderte helixförmige Rotationsbewegung der Elektronen-Spins, während sich die Elektronen durch die Nanodrähte bewegen.

    Titel der Originalpublikation:
    A. Sasaki, S. Nonaka, Y. Kunihashi, M. Kohda, T. Bauernfeind, T. Dollinger, K. Richter und J. Nitta, „Direct determination of spin-orbit interaction coefficients and realization of the persistent spin helix symmetry“, Nature Nanotechnology (2014)
    http://dx.doi.org/10.1038/nnano.2014.128

    Ansprechpartner für Medienvertreter:
    Prof. Dr. Klaus Richter
    Universität Regensburg
    Institut für Theoretische Physik
    Tel.: 0941 943-2029
    Klaus.Richter@physik.uni-regensburg.de


    Images

    Criteria of this press release:
    Journalists
    Electrical engineering, Energy, Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).