idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
08/11/2014 10:39

Das Innere einer Zelle aus Sicht eines sich bewegenden Proteins

Marietta Fuhrmann-Koch Kommunikation und Marketing
Ruprecht-Karls-Universität Heidelberg

    Zahlreiche Hindernisse, die sich aus den zellulären Strukturen ergeben, bremsen die Bewegungen von Proteinen innerhalb einer Zelle. Wissenschaftlern der Universität Heidelberg und des Deutschen Krebsforschungszentrums ist es gelungen, die Zelltopologie zu „kartieren“, indem sie Proteine in der lebenden Zelle über verschiedene Zeitspannen und Distanzen beobachtet haben. Zum Einsatz kam dabei ein neues Verfahren, das auf Fluoreszenzmikroskopie basiert. Aus der Analyse der Messdaten entwickelte das Team ein mathematisches Modell, mit dem sich intrazelluläre Strukturen rekonstruieren lassen. Die Forschungsergebnisse wurden in „Nature Communications“ veröffentlicht.

    Pressemitteilung

    Heidelberg, 11. August 2014

    Das Innere einer Zelle aus Sicht eines sich bewegenden Proteins
    Heidelberger Forscher entwickeln neue Methoden zur Bewegungsmessung von Proteinen in der Zelle

    Zahlreiche Hindernisse, die sich aus den zellulären Strukturen ergeben, bremsen die Bewegungen von Proteinen innerhalb einer Zelle. Wissenschaftlern der Universität Heidelberg und des Deutschen Krebsforschungszentrums (DKFZ) ist es gelungen, die Zelltopologie zu „kartieren“, indem sie Proteine in der lebenden Zelle über verschiedene Zeitspannen und Distanzen beobachtet haben. Zum Einsatz kam dabei ein neues Verfahren, das auf Fluoreszenzmikroskopie basiert. Damit konnten die Wissenschaftler messen, wie lange Proteine brauchen, um im Zellinneren Strecken in einem Bereich von 0,2 bis 3 Mikrometern zurückzulegen. Aus der Analyse der Messdaten entwickelte das Team unter der Leitung von Dr. Karsten Rippe ein mathematisches Modell, mit dem sich intrazelluläre Strukturen rekonstruieren lassen. Die Forschungsergebnisse wurden in „Nature Communications“ veröffentlicht.

    Zellstrukturen wie Membranen, das Zytoskelett und das DNA-Genom bilden ein dynamisches dreidimensionales Labyrinth innerhalb der Zelle. Darin müssen sich Proteine zurechtfinden, um den Ort zu erreichen, an dem sie aktiv werden sollen. Die räumliche Struktur des Zellinneren ist deshalb ein wichtiger Faktor für den Transport von Proteinen und das Funktionieren der Zelle. „Zellstrukturen sind zwar in zahlreichen mikroskopischen Untersuchungen sichtbar gemacht worden. Bisher ist jedoch unklar, wie ein in der Zelle diffundierendes Protein dieses innere Netzwerk von Hindernissen ,erspürt‘“, sagt Dr. Rippe. Um dieser Frage nachzugehen, hat sein Team eine Methode entwickelt, mit der die räumliche Struktur in einer Zelle aus zufälligen Proteinbewegungen abgeleitet werden kann. Zum Einsatz kamen dabei fluoreszierende Proteine, die mit Hilfe eines selbst entwickelten Fluoreszenzspektroskopie-Systems beobachtet wurden. Wie Karsten Rippe erläutert, stellen dicht gepackte DNA-Bereiche im Zellkern die größten Hindernisse dar.

    „Die Bewegungen eines Proteins in der Zelle ähneln denen einer Kugel in dem Geschicklichkeitsspiel, bei dem eine Murmel durch ein Labyrinth ,bugsiert‘ werden muss“, sagt Michael Baum, der Erstautor der Studie ist und die Arbeit als Teil seiner Dissertation an der Universität Heidelberg durchgeführt hat. Die Murmeln können leicht über kurze Strecken bewegt werden, dann kollidieren sie jedoch mit einem Hindernis und werden auf ihrem weiteren Weg gebremst. Das führt dazu, dass sie sich über längere Strecken mit einer verlangsamten Durchschnittsgeschwindigkeit per „stop and go“ fortbewegen. Bei der Analyse der Proteinbewegungen ordneten die Heidelberger Forscher der jeweiligen zurückgelegten Gesamtstrecke die dafür benötige Zeit zu. Daraus ergibt sich der durchschnittliche Abstand zwischen den Hindernissen. Auf diesen Daten basiert ein mathematisches Modell, mit dem sich die gemessene Bewegung der Proteine in der Zelle beschreiben und die Zelltopologie rekonstruieren lässt – und zwar mit einer deutlich besseren Auflösung als es aktuell mit einer lichtmikroskopischen Abbildung möglich ist, wie Dr. Rippe betont.

    „Die Struktur der Hindernisse, auf die ein Protein bei seiner Bewegung durch die Zelle trifft, ähnelt dem Modell eines löchrigen Mediums, wie es zum Beispiel auch in einem Schwamm zu finden ist“, sagt der Heidelberger Wissenschaftler. In dieser dynamischen Struktur waren größere Proteine zuweilen mehrere Minuten lang gefangen. Ein weiteres Forschungsergebnis zeigt, dass sich Medikamente aus der Chemotherapie oder der Malaria-Behandlung ebenfalls auf die Mobilität der Proteine im Zellkern auswirken und die DNA-Hindernisse im Zellkern durchlässiger machen können. Dr. Rippe und sein Team wollen ihren neuen Ansatz nun in weiteren Untersuchungen am BioQuant-Zentrum der Universität Heidelberg und am DKFZ anwenden. Im Mittelpunkt stehen dabei die Wechselbeziehungen zwischen medikamentenbedingten Änderungen der Zellstruktur und dem Proteintransport sowie der Fehlregulierung dieses Prozesses bei Krankheiten.
    Die Forschungsarbeiten wurden vom Bundesministerium für Bildung und Forschung gefördert.

    Weitere Informationen:
    http://malone.bioquant.uni-heidelberg.de

    Originalveröffentlichung:
    M. Baum, F. Erdel, M. Wachsmuth & K. Rippe: Retrieving the intracellular topology from multi-scale protein mobility mapping in living cells. Nature Communications 5, 4494 (24 July 2014), doi: 10.1038/ncomms5494

    Kontakt:
    Dr. Karsten Rippe
    BioQuant-Zentrum
    Telefon (06221) 54-51376
    Karsten.Rippe@bioquant.uni-heidelberg.de

    Kommunikation und Marketing
    Pressestelle
    Telefon (06221) 54-2311
    presse@rektorat.uni-heidelberg.de


    Images

    Criteria of this press release:
    Journalists, Scientists and scholars
    Biology
    transregional, national
    Research results, Scientific Publications
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).