idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
idw-Abo
Medienpartner:
Wissenschaftsjahr


Share on: 
09/21/2014 19:00

Der verbotenen Seite von Molekülen auf der Spur

Reto Caluori Kommunikation & Marketing
Universität Basel

    Forschern der Universität Basel ist es erstmals gelungen, das «verbotene» Infrarot-Spektrum eines geladenen Moleküls zu beobachten. Solche extrem schwache Spektren eröffnen neue Wege für die hochpräzise Vermessung molekularer Eigenschaften, für die Entwicklung molekularer Uhren und für die Quantentechnologie. Die Ergebnisse wurden in der renommierten Fachzeitschrift «Nature Physics» veröffentlicht.

    Die Spektroskopie, die Wechselwirkung von Materie mit Licht, ist die wohl wichtigste Methode, um die Eigenschaften von Molekülen zu untersuchen. Moleküle können dabei nur Licht bei wohldefinierten Wellenlängen absorbieren, die genau der Differenz zwischen zwei quantenmechanischen Energiezuständen entsprechen. Man spricht dabei von spektroskopischen Übergängen. Aus der Analyse der Wellenlänge und der Intensität der Übergänge lassen sich Informationen über die chemische Struktur und über die molekulare Bewegung wie Drehungen oder Schwingungen gewinnen.

    In bestimmten Fällen ist der Übergang zwischen zwei Energiezuständen jedoch nicht erlaubt, was als «verbotener» Übergang bezeichnet wird. Dieses Verbot ist jedoch nicht kategorisch, sodass verbotene Übergänge mit einer extrem empfindlichen Messmethode trotzdem beobachtet werden können. Die entsprechenden Spektren sind sehr schwach, können aber auch sehr genau vermessen werden. Sie geben Aufschluss über molekulare Eigenschaften mit einer Präzision, die mit erlaubten Spektren nicht erreichbar wäre.

    Präzise Analyse molekularer Eigenschaften

    Die Forschungsgruppe um Prof. Stefan Willitsch vom Departement Chemie der Universität Basel hat im Rahmen des Nationalen Forschungsschwerpunkts «QSIT – Quantenwissenschaften und -technologie» Methoden etabliert, mit denen Moleküle gezielt auf Quantenebene manipuliert und untersucht werden können.

    In der vorliegenden Arbeit wurden dabei einzelne geladene Stickstoffmoleküle (Ionen) in einem wohldefinierten molekularen Energiezustand erzeugt. Diese wurden dann in einer Ultrahochvakuum-Kammer in eine Anordnung von ultrakalten, lasergekühlten Calcium-Ionen, einen sogenannten Coulomb-Kristall, eingebracht. Dadurch kühlten sich die Molekül-Ionen auf wenige tausendstel Grad über dem absoluten Temperaturnullpunkt ab und lokalisierten sich im Raum. In dieser isolierten, kalten Umgebung konnten die Moleküle über lange Zeiträume störungsfrei untersucht werden. Auf diese Weise gelang es den Forschern, mit einem intensiven Laser verbotene Übergänge im Infrarotbereich anzuregen und zu beobachten.

    Perspektive für neue Anwendungen

    Die vorgestellte Methode weist den Weg zu neuen Anwendungen wie zum Beispiel der hochgenauen Vermessung molekularer Eigenschaften, der Entwicklung extrem präziserer Uhren auf Basis einzelner Moleküle oder der Quanteninformationsverarbeitung mit Molekülen. Sie eröffnet auch Möglichkeiten, fundamentale Fragestellungen mithilfe spektroskopischer Präzisionsmessungen an Molekülen aufzugreifen, die bisher eine Domäne der Hochenergiephysik waren, wie zum Beispiel die Frage, ob die Naturkonstanten tatsächlich konstant sind.

    Originalbeitrag
    Matthias Germann, Xin Tong, Stefan Willitsch
    Observation of electric-dipole-forbidden infrared transitions in cold molecular ions
    Nature Physics, published online 21 September 2014 | doi: 10.1038/nphys3085

    Weitere Auskünfte
    Prof. Dr. Stefan Willitsch, Universität Basel, Departement Chemie, Tel. +41 61 267 38 30, E-Mail: stefan.willitsch@unibas.ch


    Criteria of this press release:
    Journalists, Scientists and scholars, Students, all interested persons
    Biology, Chemistry, Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


    Simulation der räumlichen Verteilung von einzelnen Stickstoff-Ionen (grün) im Inneren eines Coulomb-Kristalls von lasergekühlten Calcium-Ionen (blau).


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).

    Cookies optimize the use of our services. By surfing on idw-online.de you agree to the use of cookies. Data Confidentiality Statement
    Okay