idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
03/24/2015 19:00

Regulationsmechanismus des Notch-Onkogens aufgeklärt

Caroline Link Referat für Presse- und Öffentlichkeitsarbeit
Justus-Liebig-Universität Gießen

    Wissenschaftlerinnen und Wissenschaftler der Universitäten Gießen und Ulm knacken den Notch-Code – Wichtiger Signalweg entdeckt

    Die Entwicklung eines Organismus aus einer befruchteten Eizelle wird – trotz der Komplexität dieses Vorgangs – durch eine überraschend kleine Zahl evolutionär hochkonservierter Signalkaskaden gesteuert. Eine solche Kaskade ist der Notch-Signalweg. Aufgrund dieser fundamentalen Bedeutung haben Mutationen im Notch-Gen schwerwiegende Folgen für den Organismus. So sind Notch-Mutationen, die den Abbau des Notch-Proteins stören, eine der häufigsten Ursachen bei der akuten lymphoblastischen Leukämie. Zahlreiche Inhibitoren, die diese Aktivität wieder normalisieren, befinden sich bereits in klinischen Testphasen zur Krebstherapie. Einen neuartigen Regulationsmechanismus der die Funktionalität des Notch-Proteins und somit auch seine Wirkung als Onkogen entscheidend beeinflusst, haben Forscherinnen und Forscher der Universität Ulm und der Justus-Liebig-Universität Gießen (JLU) nun in enger Zusammenarbeit entschlüsselt. Ihre Ergebnisse veröffentlichten sie in der Fachzeitschrift „Science Signaling“.

    Bereits vor 100 Jahren hat der Genetiker Thomas Morgan Fruchtfliegen untersucht, die in ihren Flügeln auffällige Kerben (englisch: notches) aufwiesen. Später zeigte sich, dass diese Fruchtfliegen eine Mutation in einem speziellen Gen aufwiesen, das seitdem als Notch-Gen bezeichnet wird. Dieses Gen findet man in allen mehrzelligen Tieren von der Qualle über Insekten und Schnecken bis hin zum Menschen. Heute weiß man, dass das vom Notch-Gen abgelesene Protein entwicklungsspezifische Signale von der Zelloberfläche in den Zellkern transportiert. Dort reguliert es die Expression spezifischer Genprogramme, welche wiederum die Entwicklung bestimmter Zelltypen, Organe und Organsysteme steuern – beim Menschen beispielsweise die Zellen des Immunsystems.

    Im Zentrum der Forschung zum Notch-Signalweg stand in den vergangenen Jahren die sogenannte epigenetische Kontrolle der Genexpression durch Notch. Diese Regulation setzt nicht am Genom selbst an, sondern an der Verpackung der DNA, die aus Chromatin besteht, einer komplexen Struktur aus Histonproteinen und der DNA. Wichtiger Bestandteil der Regulation ist die Modifikation der Proteine, zum Beispiel durch Übertragung oder Entfernung von Methylgruppen. Eine solche Methylierung kann die Funktion des Proteins verändern. Bestimmte Methyltransferasen, die Histonproteine modifizieren, können über diese sogenannten Chromatinmodifikationen direkt die Genexpression beeinflussen.

    In einer engen Zusammenarbeit mit Prof. Dr. Franz Oswald sowie Kolleginnen und Kollegen an der Universität Ulm konnte die Forschergruppe um Prof. Borggrefe zeigen, dass das Notch-Protein selbst durch die Methyltransferase CARM1 methyliert wird. Die Methylierung wirkt sich auf Aktivität und Stabilität des Notch-Proteins aus: Genexpression und Entwicklungsprozesse innerhalb eines Organismus verändern sich dadurch maßgeblich, wie die Forscherinnen und Forscher belegen konnten.

    Darauf aufbauend ist es den Wissenschaftlerinnen und Wissenschaftlern gelungen, ein mathematisches Modell zu entwickeln, das Stärke und Dauer eines Notch-Signals berechnet und mit dessen Hilfe man die Wirkung von Notch-Modifikationen am Computer simulieren und vorhersagen kann. Diese enge Zusammenarbeit von Wissenschaftlerinnen und Wissenschaftlern, die ihre Ergebnisse mit Hilfe von Experimenten erhalten und Forscherinnen und Forschern, die daraus Computermodelle generieren („Systembiologen“), wird immer wichtiger. Denn diese Kooperation ermöglicht es, Forschungsergebnisse in einen größeren Zusammenhang zu stellen, um komplexe biologische Abläufe besser zu verstehen und so gezielt Interventionsstrategien und Medikamente entwickeln zu können.

    Publikation:
    Hein, et al. (2015): Site-specific methylation of Notch1 controls amplitude and duration of the Notch1 response. Science Signaling, online veröffentlicht am 24. März 2015.
    DOI: 10.1126/scisignal.2005892

    Kontakt:
    Prof.Dr. Tilman Borggrefe
    Biochemisches Institut
    Friedrichstraße 24, 35392 Gießen
    Telefon: 0641 99-47400


    More information:

    http://www.uni-giessen.de


    Images

    Criteria of this press release:
    Journalists, Scientists and scholars
    Biology, Medicine
    regional
    Research results
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).