idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
03/30/2015 11:00

Zeta-Potenzial 2.0

Dr. Janine Hillmer Presse- und Öffentlichkeitsarbeit
DWI - Leibniz-Institut für Interaktive Materialien

    Olga Vinogradova, Gastprofessorin am DWI – Leibniz-Institut für Interaktive Materialien in Aachen, publiziert in der Zeitschrift ‚Physical Review Letter‘ eine neue Theorie zur Strömung von Fluiden entlang wasserabweisender Oberflächen unter Einwirkung eines elektrischen Feldes. Die Ergebnisse sind besonders relevant für den Bereich der Mikro- und Nanofluidik.

    Wer eine herkömmliche Pumpe benutzt, um eine Flüssigkeit oder ein Gas durch eine extrem dünne Kapillare hindurch zu bewegen, stößt schnell an seine Grenzen: Je dünner die Kapillare, desto höher der benötigte Druck. Der Energieaufwand für feinste Kapillaren wäre immens. Stattdessen machen sich Experten einen Kniff zu Nutze: Ersetzt man die Pumpe durch ein parallel zur Kapillare angelegtes elektrisches Feld, ist es möglich, mit geringem Aufwand einen sogenannten elektroosmotischen Fluss zu erzeugen. Er beruht auf einer Doppelschicht aus Ionen, die sich an der Innenwand der Kapillare ausbildet. Die in der Kapillare enthaltene Flüssigkeit bzw. das enthaltene Gas ist dann nicht mehr elektrisch neutral und kann durch ein elektrisches Feld bewegt werden.

    Im Jahr 1909 gelang es dem polnischen Physiker Marian Smoluchowski, die Strömungsgeschwindigkeit in einem solchen Aufbau zu beschreiben. Jetzt, gut 100 Jahre später, wird deutlich, dass die Smoluchowski-Gleichung nur für ganz spezielle Bedingungen eine exakte Vorhersage treffen kann: Für hydrophile Kapillarwände, bei denen der Kontaktwinkel gegenüber Wasser kleiner als 90 Grad ist.

    Ganz andere Bedingungen herrschen an wasserabweisenden (hydrophoben) Oberflächen, an die sich aber ebenfalls Ionen anlagern können. Olga Vinogradova erklärt: „Um auch hier genaue Berechnungen zu ermöglichen, haben wir die Gleichung angepasst. Zwei Phänomene spielten dabei eine Rolle: Das war einerseits eine Gleitbewegung (‚Slippage‘), welche die Geschwindigkeit der Fluidströme deutlich erhöht. Andererseits wollten wir das Verhalten von an die Kapillarwand angelagerten Ionen berücksichtigen. Versetzt das elektrische Feld auch diese Ionen in Bewegung, können sie den Fluidstrom in Wandnähe zusätzlich beschleunigen oder auch abbremsen. Unsere theoretischen Überlegungen haben wir anschließend durch Simulationsexperimente belegen können.“

    Hauptakteur in der Smoluchowski-Gleichung ist das sogenannte Zeta-Potenzial. Dieser Parameter spiegelt die elektrokinetische Mobilität eines Partikels wieder. Je höher das Zeta-Potenzial, desto schneller bewegt sich ein Partikel oder ein Fluid in einem elektrischen Feld. Für hydrophobe Oberflächen schlägt Olga Vinogradova in ihrer Publikation eine angepasste Interpretation des Zeta-Potenzials vor, die neben der Beweglichkeit von Oberflächenladungen auch den erwähnten Gleiteffekt einbezieht.

    Das Zeta-Potenzial spielt in vielen technologischen und wissenschaftlichen Bereichen eine Rolle, beispielsweise in der Medizin, der Abwasserbehandlung und der Bodenreinigung. Darüber hinaus ist es wichtig für mikro- und nanofluidische Anwendungen. Ein Beispiel ist die Minidiagnostik in Form von Chip-Laboren, wie sie heutzutage bereits für den Nachweis und die Trennung von Biomolekülen genutzt werden.

    Olga I. Vinogradova ist Professorin an der M.V. Lomonosov Moscow State University und am A.N. Frumkin Institute für Physikalische Chemie und Elektrochemie der Russischen Akademie der Wissenschaften. Mit ihren Kenntnissen besonders im Bereich der theoretischen Physik und Simulationsmethoden verstärkt sie das DWI-Team seit 2007 mit einer Gastprofessur. Ein Teil der beschriebenen Arbeiten wurde im Rahmen des Sonderforschungsbereichs 985 ‚Functional Microgels and Microgel Systems’ durchgeführt.

    ---
    Publikation:
    S. R. Maduar, A. V. Belyaev, V. Lobaskin, and O. I. Vinogradova
    Phys. Rev. Lett. 114, 118301 – Published 19 March 2015
    http://dx.doi.org/10.1103/PhysRevLett.114.118301


    Images

    Schematische Darstellung eines Fluidstroms an einer hydrophoben Oberfläche. An der Oberfläche angelagerte Ionen können den Fluidstrom in Wandnähe zusätzlich beschleunigen oder auch abbremsen.
    Schematische Darstellung eines Fluidstroms an einer hydrophoben Oberfläche. An der Oberfläche angela ...
    Bild: Olga Vinogradova
    None


    Criteria of this press release:
    Journalists, Scientists and scholars
    Chemistry, Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Schematische Darstellung eines Fluidstroms an einer hydrophoben Oberfläche. An der Oberfläche angelagerte Ionen können den Fluidstrom in Wandnähe zusätzlich beschleunigen oder auch abbremsen.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).