idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
03/31/2015 18:04

Climate change: bacteria play an important role in the long term storage of carbon in the ocean

Susanne Hufe Presse- und Öffentlichkeitsarbeit
Helmholtz-Zentrum für Umweltforschung - UFZ

    Leipzig, Columbia (SC), Munich. The ocean is a large reservoir of dissolved organic molecules, and many of these molecules are stable against microbial utilization for hundreds to thousands of years. They contain a similar amount of carbon as compared to carbon dioxide (CO2) in the atmosphere. Researchers at the Helmholtz Centre for Environmental Research (UFZ), the University of South Carolina and the Helmholtz Centre Munich found answers to questions about the origin of these persistent molecules in a study published in Nature Communications.

    Dissolved organic matter (DOM) in the ocean is a highly complex mixture of different carbon-based substances which are metabolic or excretory products from organisms or have formed through decomposition processes. A proportion of the DOM can be consumed by bacteria and remineralized to carbon dioxide. However, the majority of the DOM found in the ocean (more than 90 percent) is resistant to bacterial utilization and can be 4,000 to 6,000 years old on average. "Bacteria have an enormous repertoire of enzymatic mechanisms to break down organic material and use it as a source of energy," said Dr Oliver Lechtenfeld of the Helmholtz Centre for Environmental Research (UFZ), who carried out the study at the University of South Carolina. "It's remarkable that such a large reservoir of DOM seems to be resistant to breakdown in the ocean. And it raises the question: where does this persistent DOM actually come from?"

    Studies have shown that bacteria in laboratory experiments produce DOM that can be stable for over a year. Lechtenfeld: "We wanted to find out whether the DOM produced by bacteria in the laboratory is chemically comparable with the persistent DOM that occurs naturally". For their study, the researchers placed bacteria from the sea in artificial sea water, in order to ensure that the water was DOM-free at the beginning of the experiment. The bacteria were fed using known carbon sources. "By doing this, we knew that the DOM measured in the incubations was produced by the bacteria", explained Lechtenfeld.

    After four weeks the DOM produced by bacteria was analyzed using high-resolution chemical methods (nuclear magnetic resonance spectroscopy and ultra high-resolution mass spectrometry) and compared with the DOM found naturally in sea water. "Our study reveals that bacteria rapidly produced complex DOM that was similar in it's chemical composition to natural DOM. The results were surprising and indicate that bacterial metabolites are a source of the persistent molecules in the ocean," said Dr Ronald Benner from the University of South Carolina.

    As a consequence, the researchers got an answer to their question as to the origin of persistent DOM: "It seems very clear that bacteria are a major driver in keeping a fraction of the atmospheric carbon dioxide in the ocean for long periods of time," said Dr Norbert Hertkorn of the Helmholtz Centre Munich. "Although the percentage of persistent substances in our experiment was apparently very low, their stability suggests that they may accumulate in the ocean. This is how bacteria efficiently contribute to carbon storage in the ocean and play an important and so far underestimated role for our climate."

    UFZ researcher Oliver Lechtenfeld wants to carry out further investigations to find out which chemical structures and mechanisms are responsible for bacteria being unable to break down persistent substances. In doing so he will extend his focus to include the soil ecosystem: "Even less is known about which processes in the soil are responsible for capturing carbon in the form of persistent organic molecules. That is, however, an important aspect for agriculture and for the treatment of drinking water. As for some years, there have been increased DOM concentrations measured in catchment areas of water dams," said Lechtenfeld. "How climate change with rising average temperatures and changing precipitation patterns is going to affect the composition of bacterial communities in the sea and in soil and their ability to store carbon, requires further research efforts."

    Publication:
    Oliver J. Lechtenfeld, Norbert Hertkorn, Yuan Shen, Matthias Witt & Ronald Benner (2015): Marine sequestration of carbon in bacterial metabolites. Nature Communications 6:6711, http://dx.doi.org/10.1038/ncomms7711

    Further information:
    Dr. Oliver Lechtenfeld
    Centre for Environmental Research (UFZ)
    Department of Analytical Chemistry
    Phone: +49(341)235-1020
    E-mail: oliver.lechtenfeld@ufz.de

    or via
    UFZ press office (Tilo Arnhold, Susanne Hufe)
    Phone: +49-(0)341-235-1635, -1630
    http://www.ufz.de/index.php?en=640

    In the Helmholtz Centre for Environmental Research (UFZ), scientists conduct research into the causes and consequences of far-reaching environmental changes. Their areas of study cover water resources, biodiversity, the consequences of climate change and possible adaptation strategies, environmental technologies and biotech-nologies, bio-energy, the effects of chemicals in the environment and the way they influence health, modelling and social-scientific issues. Its guiding principle: Our re-search contributes to the sustainable use of natural resources and helps to provide long-term protection for these vital assets in the face of global change. The UFZ em-ploys more than 1,100 staff at its sites in Leipzig, Halle and Magdeburg. It is funded by the federal government, Saxony and Saxony-Anhalt. http://www.ufz.de/

    The Helmholtz Association contributes to solving major and urgent issues in society, science and industry through scientific excellence in six research areas: Energy, earth and environment, health, key technologies, structure of matter as well as avia-tion, aerospace and transportation. The Helmholtz Association is the largest scientific organisation in Germany, with 35,000 employees in 18 research centres and an an-nual budget of around €3.8 billion. Its work is carried out in the tradition of the great natural scientist Hermann von Helmholtz (1821-1894). http://www.helmholtz.de/


    More information:

    http://www.ufz.de/index.php?en=33696


    Images

    Algae and bacteria in the ocean have a great impact on the equilibrium between the drawdown and release of carbon dioxide (CO2) from the atmosphere and therefore on the global climate.
    Algae and bacteria in the ocean have a great impact on the equilibrium between the drawdown and rele ...

    None


    Criteria of this press release:
    Journalists, Students, Teachers and pupils
    Biology, Chemistry, Environment / ecology, Oceanology / climate
    transregional, national
    Research results, Scientific Publications
    English


     

    Algae and bacteria in the ocean have a great impact on the equilibrium between the drawdown and release of carbon dioxide (CO2) from the atmosphere and therefore on the global climate.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).