idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
06/18/2015 11:00

Forscher filmen Schockwelle in Diamant

Dr. Thomas Zoufal Presse- und Öffentlichkeitsarbeit
Deutsches Elektronen-Synchrotron DESY

    Röntgenlaser eröffnet neue Möglichkeiten in der Materialforschung

    Mit ultrakurzen Röntgenblitzen haben Forscher Schockwellen in Diamanten gefilmt. Die Studie unter Leitung von DESY-Wissenschaftlern eröffnet neue Möglichkeiten zur Untersuchung von Materialeigenschaften. Dank der extrem hellen und kurzen Röntgenblitze konnten die Forscher die rasante Dynamik der Schockwelle sowohl mit hoher räumlicher als auch mit hoher zeitlicher Genauigkeit verfolgen. Das Team um DESY-Physiker Prof. Christian Schroer stellt seine Arbeit im Fachblatt „Scientific Reports“ vor.

    „Mit der Untersuchung betreten wir ein neues wissenschaftliches Feld“, betont Hauptautor Dr. Andreas Schropp von DESY. „Erstmals können wir mit Röntgenbildgebung die lokalen Eigenschaften und die Dynamik von Materie unter extremen Bedingungen quantitativ bestimmen.“

    Für ihre Pilotstudie hatten die Wissenschaftler Diamanten mit dem derzeit stärksten Röntgenlaser der Welt durchleuchtet, der Linac Coherent Light Source LCLS am US-Beschleunigerzentrum SLAC in Kalifornien. Dabei spannten sie drei Zentimeter lange und knapp 0,3 Millimeter dünne Diamantstifte in einen Probenhalter ein. Ein starker Infrarotlaser löste eine Schockwelle aus, indem er einen 0,15 milliardstel Sekunden (150 Pikosekunden) kurzen Blitz auf die Schmalseite des Diamanten schoss und dabei eine Leistung von bis zu 12 Billionen Watt (12 Terawatt) pro Quadratzentimeter erreichte. Diese Schockwelle raste mit rund 72.000 Kilometern pro Stunde quer durch den Diamanten.

    „Um Schnappschüsse von derart schnellen Prozessen zu machen, sind extrem kurze Belichtungszeiten nötig“, erläutert Schropp. Die LCLS liefert Röntgenblitze, die nur 50 Millionstel einer milliardstel Sekunde (50 Femtosekunden) dauern und die schnellste Bewegungen in einem Standbild einfrieren können. Da die Diamantprobe allerdings bei jeder Aufnahme unter den extremen Bedingungen zerstört wird, mussten die Wissenschaftler das Experiment mehrfach mit gleichartigen Proben wiederholen, wobei sie die Schockwelle jeweils zu einem etwas späteren Zeitpunkt ablichteten. Diese Serie von Standbildern montierten sie schließlich wie ein Daumenkino zu einem Film.

    Aus diesem Film konnten die Forscher quantitativ die Dichteänderung aufgrund der Schockwelle ermitteln. Das speziell hierfür entwickelte Röntgenmikroskop ermöglicht die Abbildung von bis zu 500 millionstel Millimeter (500 Nanometer) kleinen Details einer Probe. Zusammen mit der gemessenen Schallgeschwindigkeit lässt sich so der Zustand des Diamanten unter hohen Drücken bestimmen. Ergebnis: Die heftige Schockwelle presst den Diamanten – immerhin eines der härtesten Materialien der Welt – lokal um knapp zehn Prozent zusammen.

    Die Pilotstudie bietet neue Einblicke in die Beschaffenheit von Diamant. „Durch ihre außergewöhnlichen physikalischen Eigenschaften sind Diamanten ein Material von anhaltender wissenschaftlicher und technologischer Bedeutung“, sagt Prof. Jerome Hastings vom SLAC. „Zum ersten Mal haben wir auf direktem Weg mit Röntgenstrahlen Schockwellen in Diamanten abgebildet, was neue Perspektiven auf das dynamische Verhalten von Diamant unter Hochdruck eröffnet.“ So ist für Materialforscher insbesondere das bereits in diesen ersten Aufnahmen sichtbare komplizierte Verhalten hinter der vordersten Schockfront von Interesse.

    Durch die Weiterentwicklung der Röntgenlaser und eine Optimierung des Detektors lässt sich die räumliche Auflösung nach Erwartung der Forscher noch auf feiner als 100 Nanometer steigern, etwa auch am Europäischen Röntgenlaser European XFEL, der zurzeit vom DESY-Gelände in Hamburg bis ins benachbarte Schenefeld gebaut wird. Die Technik kann dabei dank der durchdringenden Röntgenstrahlung nahezu auf beliebige feste Stoffe, etwa Eisen oder Aluminium, angewendet werden. „Die Methode ist für eine Reihe von Anwendungen in der Materialwissenschaft und bei der Beschreibung physikalischer Prozesse im Inneren von Planeten wichtig“, fasst Untersuchungsleiter Schroer zusammen.

    Neben DESY und SLAC waren die Technische Universität Dresden, die Universität Oxford in Großbritannien und das Lawrence Livermore National Laboratory (LLNL) in den USA an der Arbeit beteiligt.

    ###

    Das Deutsche Elektronen-Synchrotron DESY ist das führende deutsche Beschleunigerzentrum und eines der führenden weltweit. DESY ist Mitglied der Helmholtz-Gemeinschaft und wird zu 90 Prozent vom BMBF und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert. An seinen Standorten in Hamburg und Zeuthen bei Berlin entwickelt, baut und betreibt DESY große Teilchenbeschleuniger und erforscht damit die Struktur der Materie. Die Kombination von Forschung mit Photonen und Teilchenphysik bei DESY ist einmalig in Europa.

    ###

    Originalveröffentlichung
    Imaging Shock Waves in Diamond with Both High Temporal and Spatial Resolution at an XFEL; Andreas Schropp, Robert Hoppe, Vivienne Meier, Jens Patommel, Frank Seiboth, Yuan Ping, Damien G. Hicks, Martha A. Beckwith, Gilbert W. Collins, Andrew Higginbotham, Justin S. Wark, Hae Ja Lee, Bob Nagler, Eric C. Galtier, Brice Arnold, Ulf Zastrau, Jerome B. Hastings & Christian G. Schroer; „Scientific Reports”, 2015; DOI: 10.1038/srep11089


    More information:

    https://www.desy.de/aktuelles/news_suche/index_ger.html?openDirectAnchor=819&... - Weiteres Bild- und Filmmaterial


    Images

    Lauf der Schockwelle durch den Diamanten. Die Riffelstruktur links stammt vom Probenhalter.
    Lauf der Schockwelle durch den Diamanten. Die Riffelstruktur links stammt vom Probenhalter.
    Bild: Andreas Schropp/DESY
    None


    Criteria of this press release:
    Journalists, Scientists and scholars, Students, Teachers and pupils, all interested persons
    Materials sciences, Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Lauf der Schockwelle durch den Diamanten. Die Riffelstruktur links stammt vom Probenhalter.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).