Darmstadt, 15. Oktober 2015. Physikern der TU Darmstadt ist es erstmals gelungen, einen extrem seltenen radioaktiven Zerfall zu beobachten. Das Außergewöhnliche dabei: Dieser sogenannte Doppelgammazerfall eines angeregten Kernzustandes, der einen Prozess höherer Ordnung darstellt, findet statt, obwohl der Prozess erster Ordnung nicht durch Energie- und Impulserhaltung oder quantenmechanische Auswahlregeln verboten ist. Der experimentelle Nachweis ist jetzt in der Fachzeitschrift „Nature“ publiziert.
Ein Team um Privatdozent Dr. Heiko Scheit und die Professoren Norbert Pietralla und Thomas Aumann vom Institut für Kernphysik hat ein äußerst schwer beobachtbares radioaktives Phänomen nachgewiesen. Normalerweise ähnelt Radioaktivität einer Geburt: Ein Atomkern bringt ein Teilchen oder ein Photon (Strahlungsteilchen) zur Welt. Äußerst selten gebiert ein Atomkern Zwillinge: Zum exakt gleichen Zeitpunkt kommen zwei identische Teilchen oder Photonen aus dem Atomkern heraus. Dies war bisher nur für den Doppelbetazerfall bei dem gleichzeitig zwei Elektronen (Positronen) und zwei Antineutrinos (Neutrinos) emittiert werden und für den Doppelgammazerfall beobachtet worden, einem analogen Phänomen für die energiereiche Gamma-Strahlung. Diesen Prozess hatte die spätere Nobelpreisträgerin Maria Göppert-Mayer schon 1930 vorhergesagt. Beim Aussenden eines Photons vollzieht der Kern einen Quantensprung und verliert dabei Energie. Diese Energie trägt das ausgesendete Photon vom Kern weg. In sehr seltenen Fällen, so sagte Göppert-Mayer vorher, verteilt sich die Energie auf zwei simultan ausgesendete Photonen im sogenannten Zweiphotonenzerfall.
Scheit erklärt, dass Prozesse mit zwei Photonen, also nicht nur der Zerfall sondern auch die Anregung eines Atoms in der Atomphysik inzwischen standardmäßig beobachtet und angewandt werden. Allerdings gelang es in der Kernphysik bisher nur in drei sehr speziellen Fällen, den Doppelgammazerfall nachzuweisen, nämlich in Fällen, wo der einfache Gammazerfall durch quantenmechanische Auswahlregeln verboten ist. Wenn der einfache Gammazerfall erlaubt ist, wurde dieser Prozesse bisher noch nie beobachtet.
„Seit den 1980er Jahren blieben alle Versuche, den Doppelgammazerfall in Konkurrenz zu dem gewöhnlichen einfachen Gammazerfall nachzuweisen, erfolglos“, sagt Pietralla. Zwar gibt es Apparaturen, die Photonen nur dann registrieren, wenn sie gleichzeitig „geboren“ werden. Weil aber in den untersuchten Proben sehr viele Atomkerne gleichzeitig zerfallen, ging das eigentlich gesuchte Phänomen, dass nämlich die Zwillingsphotonen aus demselben Kern kommen, in der Masse unter wie ein echtes Zwillingspaar in einer Stadt mit einer Million Einwohner. Außerdem kann es vorkommen, dass ein Photon vom ersten Detektor registriert wird und durch einen Streuprozess mit Lichtgeschwindigkeit binnen weniger Milliardstel Sekunden zum zweiten Detektor gelangt, um dort ein zweites Mal detektiert zu werden. Auch das täuscht einen Zwilling vor.
Die Darmstädter Forscher lösten beide Probleme mit neu entwickelten, von der Deutschen Forschungsgemeinschaft finanzierten Gammastrahlungsdetektoren. Das Besondere an diesen Geräten: Sie können nicht nur die Energie eines Photons sehr genau bestimmen. Sie erkennen zudem Zeitunterschiede von einigen Hundert Pikosekunden (einigen Zehnmilliardstel einer Sekunde). Walz und seine Kollegen bauten einen Ring aus mehreren dieser Detektoren, in dessen Mitte sie eine Substanz platzierten, die Gammastrahlung genau bestimmter Energie abgibt.
Die Detektoren sprachen an, wenn sie innerhalb eines sehr engen Zeitfensters von wenigen Nanosekunden zwei Photonen registrierten, die zusammen die Energie des Quantensprungs haben. Tatsächlich fanden sie auf diese Weise die Zwillingsphotonen. „Sie entstehen etwa bei jedem Millionsten Gamma-Zerfall“, sagt Pietralla.
Weil das Zeitfenster kleiner ist als die Zeit, die ein gestreutes Photon benötigt, um mit Lichtgeschwindigkeit von einem Detektor zum andern zu kommen, konnten die Physiker ausschließen, dass ihre Messung ein Artefakt ist. Mithilfe seines Kollegen Vladimir Ponomarev konnte Walz die Messwerte auch quantitativ anhand eines theoretischen Modells erklären.
Professor Pietrallas Mitarbeiter Dr. Christopher Walz ist für die Entdeckung mit den Dissertationspreisen 2014 der TU Darmstadt und der European Physical Society geehrt worden.
Die Forschungsarbeiten wurden unterstützt vom Land Hessen/LOEWE-Zentrum Helmholtz International Center for FAIR (Facility for Antiproton and Ion Research) und im Rahmen des Sonderforschungsbereichs 634 von der Deutschen Forschungsgemeinschaft.
http://www.nature.com/nature/journal/v526/n7573/full/nature15543.html Link zur Veröffentlichung
http://dx.doi.org/10.1038/nature15543 Permanenter Link zur Veröffentlichung
Criteria of this press release:
Journalists, Scientists and scholars
Physics / astronomy
transregional, national
Research results, Scientific Publications
German
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).