idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
02/15/2016 10:25

Die Kraft der Sonne chemisch gespeichert

Dr. Florian Aigner Büro für Öffentlichkeitsarbeit
Technische Universität Wien

    An der TU Wien wurde eine neuartige photo-elektrochemische Zelle entwickelt, mit der man die Energie von UV-Licht bei hohen Temperaturen chemisch speichern kann.

    Die Natur macht es vor: Pflanzen können Sonnenlicht auffangen und chemisch speichern. Dieses Kunststück auf großtechnischer Skala nachzumachen, gelingt uns heute aber noch nicht besonders gut. Photovoltaik wandelt das Licht direkt in Strom um, aber bei hohen Temperaturen nimmt der Wirkungsgrad konventioneller Solarzellen deutlich ab. Wenn man den Strom zur Gewinnung von Wasserstoff nutzt, kann man die Energie chemisch speichern, doch die Effizienz dieses Prozesses ist begrenzt.
    An der TU Wien wurde nun ein neues Konzept entwickelt: Durch die Auswahl ganz spezieller Materialien gelang es, Hochtemperatur-Photovoltaik mit einem elektrochemischen Element zu kombinieren. Damit kann man UV-Licht nutzen, um Sauerstoffionen durch eine keramische Elektrolytmembran zu pumpen – so wird die Energie des UV-Lichts chemisch gespeichert. In Zukunft soll man mit dieser Methode Wasser mit Sonnenlicht direkt in Wasserstoff und Sauerstoff spalten können.

    Hochtemperatur-taugliche Materialien

    Schon als Student hatte Georg Brunauer immer wieder darüber nachgedacht, wie man Photovoltaik und elektrochemische Speicherung kombinieren könnte. Allerdings müsste ein solches System bei hohen Temperaturen funktionieren. „Dann könnte man nämlich das Licht der Sonne mit Spiegeln konzentrieren und große Anlagen mit hohem Wirkungsgrad bauen“, sagt Brunauer. Gewöhnliche Solarzellen funktionieren allerdings nur bis etwa 100°C gut – in einem Solarkonzentrator-Kraftwerk würden viel höhere Temperaturen entstehen.

    Bei der Arbeit an seiner Dissertation gelang es Brunauer dann, einen Lösungsansatz für dieses Problem umzusetzen – und zwar mit einer ungewöhnlichen Wahl von Materialien. Anstatt silizium-basierter Photovoltaik wurden spezielle Mischmetalloxide vom Typ Perovskit verwendet. Durch die Kombination mehrerer verschiedener Metalloxide konnte eine Zelle hergestellt werden, die Hochtemperatur-Photovoltaik und Elektrochemie vereint. Neben dem Team von Prof. Karl Ponweiser, Brunauers Dissertationsbetreuer am Institut für Energietechnik und Thermodynamik, waren auch noch andere Forschungsgruppen der TU Wien am Projekt beteiligt: Das Elektrochemie-Team von Prof. Jürgen Fleig (Chemische Technologien und Analytik) sowie das Atominstitut der TU Wien.

    Erst Spannung erzeugen, dann Ionen pumpen

    „Unsere Zelle besteht aus zwei verschiedenen Teilen – nämlich aus einem oberen photoelektrischen und einen unteren elektrochemischen Teil“, sagt Georg Brunauer. „In der oberen Schicht werden durch Beleuchtung freie Ladungsträger erzeugt, genau wie in einer gewöhnlichen Solarzelle.“ Die Elektronen werden allerdings sofort wegtransportiert und auf die untere Seite der elektrochemischen Zelle geleitet. Das führt dazu, dass Sauerstoffatome dort negativ aufgeladen werden und dann durch die untere Schicht der Zelle hindurchwandern können.

    „Das ist der entscheidende photoelektrochemische Schritt, der in weiterer Folge dann die Grundlage für Wasserzerlegung und Wasserstoffproduktion sein soll“, erklärt Brunauer. Die Vorstufe dazu – eine mit UV-Licht angetriebene Sauerstoff-Pumpe, funktioniert bereits und liefert bei 400°C eine Leerlaufspannung von bis zu 920 Millivolt.

    Die Arbeiten zur Photo-elektrochemischen Festoxidzelle wurden nun im Fachjournal „Advanced Functional Materials“ veröffentlicht. Damit ist die Forschung freilich noch nicht abgeschlossen: „Weiterführende Arbeiten sind wichtig, um den Effekten phänomenologisch auf den Grund zu gehen und damit das Material noch weiter optimieren zu können“, sagt Brunauer. Wenn die elektrische Leistung noch etwas gesteigert wird, lässt sich mit der Zelle Wasser in Wasserstoff und Sauerstoff aufspalten. „Dieses Ziel ist in Griffweite, jetzt wo wir bewiesen haben, dass das Grundprinzip funktioniert“, sagt Georg Brunauer. Nicht nur zur Wasserstoffproduktion eignet sich das neue Konzept; man könnte auch CO2 aufspalten und daraus CO in Hinblick für Kraftstoffsynthesen gewinnen.

    Patente und Firmengründung

    Damit die neue Erfindung den Sprung vom Universitätslabor in die Umsetzung eines Prototyps schafft, hatte Georg Brunauer unteranderem mit einem Industriepartner das Startup-Unternehmen NOVAPECC gegründet. Gemeinsam mit der TU Wien wurden Patente angemeldet, dabei wurde Brunauer vom Forschungs- und Transfersupport der TU Wien unterstützt. Auch vom Inkubatorprogramm INiTS wurdr das Projekt unterstützt. Gefördert wurde das Projekt außerdem durch ein Brückenschlagprogramm der Forschungsförderungsgesellschaft FFG.

    Rückfragehinweis:
    Dipl.-Ing. Georg Brunauer
    Institut für Energietechnik und Thermodynamik
    Technische Universität Wien
    Getreidemarkt 9, 1060 Wien
    T: +43-1-58801-302332
    georg.brunauer@tuwien.ac.at


    More information:

    http://onlinelibrary.wiley.com/doi/10.1002/adfm.201503597/full Originalpublikation


    Images

    Beheizter Versuchsreaktor
    Beheizter Versuchsreaktor
    Source: TU Wien

    Photochemische Zelle: Licht erzeugt freie Ladungsträger, Sauerstoff (blau) wird durch die Membran gepumpt.
    Photochemische Zelle: Licht erzeugt freie Ladungsträger, Sauerstoff (blau) wird durch die Membran ge ...
    Source: TU Wien


    Criteria of this press release:
    Journalists
    Chemistry, Electrical engineering, Energy, Mechanical engineering
    transregional, national
    Research results
    German


     

    Beheizter Versuchsreaktor


    For download

    x

    Photochemische Zelle: Licht erzeugt freie Ladungsträger, Sauerstoff (blau) wird durch die Membran gepumpt.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).