idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
05/03/2016 07:50

Ein Experiment will die Quantenphysik für das menschliche Auge sichtbar machen

Reto Caluori Kommunikation & Marketing
Universität Basel

    Die Voraussagen der Quantenphysik sind durch unzählige Experimente bestätigt. Doch kein Mensch hat bisher den quantenphysikalischen Effekt der Verschränkung von Auge direkt beobachtet. Dies soll nun ein Experiment ermöglichen, das ein theoretischer Physiker der Universität Basel mit weiteren Wissenschaftlern vorschlägt. Das Experiment könnte neuen Anwendungen der Quantenphysik den Weg bereiten.

    Die Quantenphysik ist über 100 Jahre alt, doch sie ruft auch heute mitunter noch ungläubiges Staunen hervor. Das gilt beispielsweise für die Verschränkung, ein quantenphysikalisches Phänomen, das sich etwa zwischen Atomen oder Photonen (Lichtteilchen) beobachten lässt: Sind zwei dieser Teilchen verschränkt, lässt sich der physikalische Zustand der beiden Einzelteile nicht mehr unabhängig beschreiben, sondern nur noch das Gesamtsystem, das beide Teilchen gemeinsam bilden.

    Trotz dieser Besonderheit sind verschränkte Photonen Teil der realen Welt, wie viele Experimente bewiesen haben. Allerdings hat noch kein Mensch verschränkte Photonen direkt beobachtet. Das liegt daran, dass sich mit den verfügbaren Technologien nur einzelne bzw. eine Handvoll verschränkter Photonen herstellen lassen. Ihre Zahl ist jedoch zu gering, als dass die Photonen vom menschlichen Auge als Licht wahrgenommen werden könnten.

    Verschränkte Photonen hundertfach verstärken

    Nicolas Sangouard, theoretischer Physiker an der Universität Basel, hat nun zusammen mit zwei Quantenphysikern aus Delft (Niederlande) und Innsbruck (Österreich) in der Fachzeitschrift «Optica» aufgezeigt, wie die direkte Beobachtung verschränkter Photonen gelingen könnte. Die Grundidee: In einem Experiment wird ein verschränktes Photon erzeugt und dann durch eine spezielle Technik vervielfältigt, ohne dabei die quantenphysikalische Verschränkung zu zerstören.

    Auf dem Weg wären dann rund hundert verschränkte Photonen vorhanden. Genau diese Zahl ist nach heutigem Wissen nötig, um beim Menschen den Eindruck von Licht zu erzeugen. Während die Hundert Photonen auf die Netzhaut treffen, kommt es nochmals zu erheblichen Verlusten. Nur rund sieben von ihnen erreichen tatsächlich eines der 120 Millionen lichtempfindlichen Stäbchen der Netzhaut. Diese Photonen erzeugen dann jenen Nervenimpuls, der im Gehirn eine Wahrnehmung von Licht hervorruft.

    Zwei verschränkte Zustände

    In dem Experiment, das die drei Quantenphysiker vorschlagen, entsteht Verschränkung durch ein einzelnes Photon, das auf einen halbdurchlässigen Spiegel gelenkt wird. Was dann geschieht, erklärt Nicolas Sangouard: «Das einzelne Photon wird vom Spiegel nicht durchgelassen oder reflektiert, sondern – Quantenphysik ist seltsam – das Photon wird gleichzeitig durchgelassen und reflektiert. Hinter dem Spiegel existiert das Photon in einem ‹durchgelassenen› und einem ‹reflektierten› Zustand, wobei diese beiden Zustände miteinander verschränkt sind.»

    Hinter dem Spiegel werden zum einen ein Photonen-Detektor, zum anderen ein menschlicher Beobachter platziert. Damit das Auge des Beobachters verschränkte Photonen wahrnehmen kann, werden diese, bevor sie das Auge erreichen, mit einer Art Vergrösserungsglas hundertfach verstärkt. Dies geschieht – technisch gesprochen – durch eine Verschiebung des Phasenraums mithilfe eines Lasers. Ob der menschliche Beobachter bzw. der Detektor tatsächlich verschränkte Photonen beobachten, erschliesst sich nicht unmittelbar, sondern durch Ermittlung von Wahrscheinlichkeiten. Dazu wird das Experiment sehr oft wiederholt, und die dabei gewonnenen Daten müssen statistisch ausgewertet werden.

    Sehr lange Beobachtungszeit

    Noch steht nicht fest, ob die Gruppe um Nicolas Sangouard oder andere Quantenphysiker das Experiment aufbauen werden. Die dafür erforderlichen Technologien – spezielle Photonen-Quellen und Speziallaser – sind heute grundsätzlich verfügbar. Die entscheidende Hürde ist denn auch nicht der technische Aufbau, sondern die praktische Durchführung des Experiments.

    Das menschliche Auge ist bei der Zählung von schwachen Lichtimpulsen nämlich etwa eine Milliarde Mal langsamer als moderne Photonen-Detektoren. «Nach einer ersten Schätzung sind mehrere Hunderttausend Durchläufe nötig, bis wir genügend Daten haben, um zu wissen, ob wir tatsächlich verschränkte Photonen beobachtet haben. Das heisst, die Testperson in unserem Experiment müsste während mehreren Hundert Stunden im Sekundentakt feststellen, ob sie gerade einen Lichtimpuls wahrgenommen hat oder nicht.»

    Gelingt trotz solcher Hürden am Ende das Experiment, wäre der Beweis erbracht, dass das menschliche Auge Quantenverschränkung direkt wahrnehmen kann und somit das leistet, wofür bisher komplizierte und teure Detektoren erforderlich sind. Die Wissenschaft arbeitet gegenwärtig daran, das Prinzip der Verschränkung für den Bau sicherer digitaler Kommunikationsverbindungen oder für Quantencomputer zu nutzen. Laut Nicolas Sangouard könnten solche Anwendungen vom neuen Experiment profitieren.

    Das Forschungsprojekt wird im Rahmen des Nationalen Forschungsschwerpunkts Quantenwissenschaften und -technologie (QSIT) vom Schweizerischen Nationalfonds unterstützt, zudem von der US-amerikanischen John Templeton Foundation.

    Originalbeitrag

    Valentina Caprara Vivoli, Pavel Sekatski, and Nicolas Sangouard
    What does it take to detect entanglement with the human eye?
    Optica (2016), doi: 10.1364/optica.3.000473

    Weitere Auskünfte

    Prof. Dr. Nicolas Sangouard, Universität Basel, Departement Physik, Theoretische Quantenoptik, Tel. +41 61 267 39 15, E-Mail: nicolas.sangouard@unibas.ch


    More information:

    http://dx.doi.org/10.1364/optica.3.000473 - Abstract
    http://qotg.physik.unibas.ch/ - Forschungsgruppe Prof. Nicolas Sangouard


    Images

    Ein Photon wird in einen halbtransparenten Spiegel gelenkt. Danach existiert es in zwei miteinander verschränkten Zuständen. Das Photon wird dann von einem Detektor bzw. von Auge wahrgenommen.
    Ein Photon wird in einen halbtransparenten Spiegel gelenkt. Danach existiert es in zwei miteinander ...
    Illustration: Valentina Caprara Vivoli
    None


    Criteria of this press release:
    Journalists, Scientists and scholars, Students, all interested persons
    Information technology, Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Ein Photon wird in einen halbtransparenten Spiegel gelenkt. Danach existiert es in zwei miteinander verschränkten Zuständen. Das Photon wird dann von einem Detektor bzw. von Auge wahrgenommen.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).