Verdichtete Bereiche mit drastisch verringerter Dynamik sind Wegbereiter für den Prozess der Glasbildung aus einer Schmelze
Physiker an der Johannes Gutenberg-Universität Mainz (JGU) haben ein entscheidendes Puzzleteilchen zur Erklärung der Glasbildung gefunden und können damit eine jahrzehntelange Kontroverse um diese Frage klären. Mit einem experimentellen Aufbau zeigen sie, dass in einer Schmelze kleine verdichtete Bereiche bestehen, die den Ausgangspunkt für die Glasbildung darstellen. In diesen verdichteten Regionen, so ihre Beobachtung, ist die Beweglichkeit der Teilchen stark eingeschränkt und es findet eine Art Klumpenbildung statt. Je mehr dieser verklumpten Regionen auftreten, desto langsamer wird ihre innere Dynamik. Ab einem bestimmten Punkt ist schließlich keine Kristallbildung mehr möglich, sondern die Schmelze verfestigt sich in einer Glasstruktur. Die Ergebnisse der Mainzer Forschungsarbeit wurden in dem Fachjournal Nature Physics publiziert. Sie zeigen auch die enge Verbindung zwischen den Mechanismen der Kristallisation und der Glasbildung auf.
Glas und Kristall sind zwei verschiedene Strukturen, die jeweils aus einer ungeordneten Schmelze entstehen können: In Gläsern behalten die Atome einen ungeordneten Zustand bei wie in einer Flüssigkeit, in Kristallen nehmen sie eine sehr regelmäßige Gitterstruktur ein. Welche Struktur sich herausbildet, entscheidet der Verfestigungsprozess. Glasbildung bezieht sich bei den physikalischen Untersuchungen nicht auf die Herstellung etwa von Fensterglas oder Trinkgläsern, sondern beschreibt die Bildung von amorphen Feststoffen, die also im Gegensatz zu Kristallen kein regelmäßiges Muster erkennen lassen.
Seit den 1990er Jahren ist bekannt, dass Schmelzen einerseits Bereiche unterschiedlicher Dichte aufweisen, andererseits aber auch Bereiche, die sich in der Beweglichkeit der Atome unterscheiden, sogenannte strukturelle bzw. dynamische Inhomogenitäten. Seit dieser Zeit haben theoretische Physiker kontroverse Debatten geführt, welche Rolle den beiden Bereichen bei der Verfestigung jeweils zukommt. „Wir haben jetzt festgestellt, dass diese Bereiche zusammenfallen. Damit ist die Kontroverse nun gelöst“, teilte Prof. Dr. Thomas Palberg vom Institut für Physik der JGU zum Ergebnis der Mainzer Forschungsarbeit mit.
Landkarte der Beweglichkeit in der Hartkugelschmelze
Um die ablaufenden Prozesse zu verstehen, hat Sebastian Golde im Arbeitskreis von Palberg Modellsysteme aus Hartkugeln mit einem optischen Experiment untersucht. Dazu hat er Hartkugelschmelzen verwendet und sie über die Streuung von Laserlicht analysiert. „Wir konnten zeigen, dass die Regionen mit dichter gepackten Kugeln und einer etwas größeren Ordnung mit den Regionen übereinstimmen, in denen sich die Hartkugeln deutlich langsamer bewegen“, erläutert Golde. Damit ist das alte Rätsel über die zwei unterschiedlichen Inhomogenitäten aufgeklärt.
Die eingesetzte Methode, eine Kombination aus statischer und dynamischer Lichtstreuung, hat aber noch weitere Einsichten ermöglicht. Die Beleuchtung der Proben mit Laser und die Verteilung des gestreuten Lichts machen die Struktur und Größe einzelner Bereiche sichtbar und lassen die Geschwindigkeit und Dynamik genau erkennen – ähnlich wie bei einer Kameraaufnahme ist das Ergebnis eine Art Foto, das die Dynamik ortsaufgelöst wiedergibt. So beobachteten die Wissenschaftler, dass bei zunehmender Packungsdichte – gemessen als Volumenanteil der Hartkugeln am Gesamtvolumen der Schmelze – mehr und mehr kleine verdichtete Bereiche mit langsamen Kugeln entstehen. Bei niedriger Konzentration dieser Bereiche wachsen Kristallstrukturen, steigt die Konzentration, verkeilen die Bereiche und das System erstarrt als Glas.
„Gläser entstehen also, wenn zu große Mengen an Kristallisationsvorstufen gebildet werden, sodass sie sich gegenseitig blockieren“, so Palberg. „Damit ist das Puzzleteilchen gefunden. Das Verklumpungsbild gehört zur Beschreibung des Glasübergangs eindeutig dazu.“ Als Grenze für die Kristallbildung haben die Mainzer Physiker eine Packungsdichte von 59 Prozent ermittelt – ist der Anteil der Hartkugeln größer, wird aus der Schmelze ein Glas.
Veröffentlichung:
Sebastian Golde, Thomas Palberg und Hans Joachim Schöpe
Correlation between dynamical and structural heterogeneities in colloidal hard-sphere suspensions
Nature Physics, Advanced Online Publication, 28. März 2016
DOI: 10.1038/NPHYS3709
Abbildung:
http://www.uni-mainz.de/bilder_presse/08_physik_komet_glas_korrelation.jpg
Glasbildung: Die dynamische Karte gibt die Geschwindigkeit der Teilchen in dem Modellsystem wieder, wobei langsamere Bereiche rot und orange, schnellere Bereiche blau gekennzeichnet sind. Rote Punkte zeigen an, wo der Übergang von der Schmelze zum Glas bereits stattgefunden hat.
Abb./©: KOMET336, Institut für Physik, JGU
Weitere Informationen:
Univ.-Prof. Dr. Thomas Palberg
Physik der Kondensierten Materie (KOMET)
Institut für Physik
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-23638
Fax: +49 6131-39-23807
E-Mail: palberg@uni-mainz.de
http://kolloid.physik.uni-mainz.de/people01.php
Weitere Links:
http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys3709.html (Article)
Criteria of this press release:
Journalists, Scientists and scholars, all interested persons
Chemistry, Materials sciences, Physics / astronomy
transregional, national
Research results, Scientific Publications
German
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).