idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
06/29/2016 19:00

A drop of water as a model for the interplay of adhesion and stiction

Kurt Bodenmüller Kommunikation
Universität Zürich

    Physicists at the University of Zurich have developed a system that enables them to switch back and forth the adhesion and stiction (static friction) of a water drop on a solid surface. The change in voltage is expressed macroscopically in the contact angle between the drop and the surface. This effect can be attributed to the change in the surface properties on the nanometer scale.

    How can a gecko move across a ceiling upside down? Two mechanisms are responsible: Adhesion via billions of extremely fine hairs on its feet, which enable it to stick to ceilings and walls. And as soon as the gecko moves, it relies on stiction. However, any change of adhesion and stiction at macroscopic level is expressed on the nanometer scale through the change in the forces exerted between atoms and molecules.

    How a drop of water touches a honeycomb structure

    An international team of researchers headed by Thomas Greber from the University of Zurich’s Physik-Institut succeeded in changing the manner in which a drop of liquid adheres to a surface by altering the electric voltage applied to a water drop. The surface upon which the drop lies consists of a material known as nanomesh, a single boron nitride layer on metallic rhodium. The structure is shaped like honeycomb with a comb depth of 0.1 nanometers and comb-comb distance of 3.2 nanometers.

    Macroscopically, the change in electrical voltage is expressed in the change of the contact angle between the drop and the nanomesh surface. The contact or wetting angle refers to the angle that a drop of liquid assumes with respect to the surface of a solid. This angle can be measured with the aid of backlit photographs.

    Change in the surface structure alters the contact angle of the drop

    On the nanometer scale, the change in voltage causes the following: The nitrogen bonds with the rhodium are replaced by hydrogen-rhodium bonds, which flattens the nanomesh structure. How strongly the boron nitride’s nitrogen binds to the surface of the rhodium depends on its distance from and direction to the next rhodium atom. And this determines the honeycomb structure and depth of the boron nitride layer. If the voltage changes, hydrogen accumulates between the boron nitride and the rhodium layer, which causes the honeycomb boron nitride layer to become flat. Tunneling microscopy can be used to detect this nanoscopic effect – the change in the surface properties of the nanomesh – in the liquid.

    “To understand and control the interplay between the macro and the nano-world is the real challenge in nanoscience,” stresses Greber. After all, six orders of magnitude need to be bridged – from millimeters in length (10-3 m) to nanometers (10-9 m); that’s a factor of one million. “Our model system of the electrically switchable nanomesh and a drop’s observable contact angle enables us to access the fundamental phenomenon of the friction of liquids on surfaces more precisely. This should help us solve problems that crop up during lubrication more effectively, for instance.” The research project actually appears on the cover of the latest issue of the renowned journal Nature.

    On the one hand, the new system is interesting for biology. Applying this effect should make it possible to control the adhesion and movement of cells. Aspects such as cell migration or the formation of complex, multicellular structures with new scientific approaches might be researched as a result. On the other hand, technological applications such as capillary pumps, where the capillary height can be controlled via electrical voltage, or micro-capillaries, where the flow resistance can be controlled, are also conceivable.

    Literature:
    Stijn F. L. Mertens, Adrian Hemmi, Stefan Muff, Oliver Gröning, Steven De Feyter, Jürg Osterwalder, Thomas Greber. Switching stiction and adhesion of a liquid on a solid. Nature. June 30, 2016. DOI: 10.1038/nature18275

    About the study
    The research results were achieved within the scope of the Sinergia Program of the Swiss National Science Foundation (SNSF). The SNSF uses this instrument to promote the collaboration between several research groups, which conduct research across disciplines with the prospect of ground-breaking results. Besides the University of Zurich, the Katholieke Universiteit Leuven, Vienna University of Technology and Empa were also involved.

    Contact:
    Prof. Dr. Thomas Greber
    Physik-Institut
    University of Zurich
    Phone: +41 44 635 57 44
    E-mail: greber@physik.uzh.ch


    More information:

    http://www.media.uzh.ch/en/Press-Releases/2016/adhesion-stiction.html


    Images

    Electrochemistry in a drop: Superposition of seven dynamic contact angle measurements of a drop of water on a surface; diameter of vertical tube capillary 0.85 mm.
    Electrochemistry in a drop: Superposition of seven dynamic contact angle measurements of a drop of w ...
    Source: UZH

    The boron nitride nanomesh superhoneycomb: nitrogen (green), boron (orange), rhodium (grey); distance between honeycombs 3.2 nm.
    The boron nitride nanomesh superhoneycomb: nitrogen (green), boron (orange), rhodium (grey); distanc ...
    Source: Marcella Iannuzzi, UZH & Ari Seitsonen, ENS Paris


    Criteria of this press release:
    Journalists, Scientists and scholars
    Chemistry, Materials sciences, Physics / astronomy
    transregional, national
    Research projects, Scientific Publications
    English


     

    Electrochemistry in a drop: Superposition of seven dynamic contact angle measurements of a drop of water on a surface; diameter of vertical tube capillary 0.85 mm.


    For download

    x

    The boron nitride nanomesh superhoneycomb: nitrogen (green), boron (orange), rhodium (grey); distance between honeycombs 3.2 nm.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).