idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
08/09/2016 09:56

Synthetische Biologie: Chemischer Schalter für Nano-Pumpe entwickelt

Nathalie Matter Corporate Communication
Universität Bern

    Synthetische Biologie ist ein aufstrebendes und sich schnell entwickelndes Forschungsfeld im Ingenieurwesen. Berner Forscher haben innerhalb des Nationalen Forschungsschwerpunkts «Molecular Systems Engineering» einen chemischen Schalter in eine molekulare «Nanomaschine» eingebaut, die unter anderem synthetische Zellen mit Energie versorgen kann.

    Synthetische Biologie ist ein stark interdisziplinäres Forschungsgebiet, das Biologie, Chemie und Physik mit Ingenieurwissenschaften verbindet. Ihr Ziel ist es, sogenannte molekulare Fabriken und synthetische Zellen mit neuen Eigenschaften und Funktionen zu entwickeln, die im Gesundheitswesen, in der Industrie oder in der biologischen und medizinischen Forschung eingesetzt werden sollen.

    Solche künstlichen Systeme im Nanometerbereich werden zusammengesetzt, indem bereits existierende oder synthetische «Bausteine» – zum Beispiel Proteine – kombiniert werden. Die so entstandenen molekularen Systeme bieten zahlreiche Nutzungsmöglichkeiten – zum Beispiel für die Synthese von chemischen Verbindungen, den Abbau von Schadstoffen, der Energieversorgung oder die medizinische Diagnose und Behandlung.

    In diesem Zusammenhang verbindet der Nationale Forschungsschwerpunkt (NFS) «Molecular Systems Engineering» (MSE; http://www.nccr-mse.ch) Schweizer Forschende aus verschiedenen Disziplinen, um gemeinsam Innovationen voranzutreiben und bestehende und künftige Herausforderungen anzugehen. Die Universität Bern ist durch die Gruppe von Prof. Dimitrios Fotiadis vom Institut für Biochemie und Molekulare Medizin vertreten.

    Nanomaschinen für die Energieumwandlung

    Energieliefernde Bausteine sind grundlegend, um molekulare Systeme anzutreiben. Lichtgetriebene sogenannte Protonenpumpen wie das Membranprotein Proteorhodopsin stellen dabei sehr geeignete Nanomaschinen für eine effiziente Energieumwandlung dar. Lichtenergie, wie etwa Sonnenenergie, ist leicht zugänglich und wird von Proteorhodopsin genutzt, um ein Konzentrationsgefälle an Protonen über Membranen, die zwei unterschiedliche Kompartimente voneinander trennen, aufzubauen. Dieses Gefälle – auch Protonengradient genannt – sorgt dafür, dass molekulare Bausteine, zum Beispiel protonengetriebene Transporter, in Gang gesetzt werden.

    Den Kurzschluss ausgemerzt

    Konventionelle Methoden, um Proteorhodopsin und Membranproteine im Allgemeinen in Nanocontainer aus Lipid oder Polymer einzubauen, führen zu einer symmetrischen Anordnung in den Membranen. Dies wiederum verursacht einen funktionellen Kurzschluss, der ein Gefälle von Protonen und somit eine Nutzung dieser Energieform verhindert.

    Deshalb haben Forscher aus der Gruppe um Fotiadis, insbesondere Dr. Daniel Harder und Stephan Hirschi, zusammen mit Kollegen aus dem NFS MSE dieses Problem gelöst, indem sie einen chemischen Schalter für Proteorhodopsin entwickelt und es somit vielseitig einsetzbar gemacht haben. Dank diesem chemischen Schalter ist es nun möglich, falsch eingebaute Proteorhodopsin-Moleküle gezielt auszuschalten und eine asymmetrische Verteilung dieser Proteine in der Membran zu erreichen.

    Diese modifizierte Version von Proteorhodopsin stellt die erste lichtgetriebene Protonenpumpe und den ersten energieliefernden Baustein dar, der chemisch an- und ausgeschaltet werden kann, je nach Bedarf des jeweiligen molekularen Systems. «Mögliche Anwendungen dieses vielseitigen, energieliefernden Bausteins in definierten molekularen Systemen könnte die licht- und solargetriebene Produktion von ATP (Adenosintriphosphat, der universelle Energieträger in Zellen) sein, sowie der bionanotechnologische Abbau von Schadstoffen – beispielsweise Antibiotika – im Wasser», sagt Fotiadis. Die Ergebnisse der Studie wurden nun im Journal «Angewandte Chemie International Edition» publiziert.

    Angaben zur Publikation:

    Daniel Harder, Stephan Hirschi, Zöhre Ucurum, Roland Goers, Wolfgang Meier, Daniel J. Müller and Dimitrios Fotiadis: Engineering a Chemical Switch into the Light-driven Proton Pump Proteorhodopsin by Cysteine Mutagenesis and Thiol Modification. Angew. Chem. Int. Ed. Engl., 2016; 55(31): 8846-8849.


    More information:

    http://www.unibe.ch/aktuell/medien/media_relations/medienmitteilungen/2016/index...


    Images

    Im Nanocontainer links kann die Energie wegen eines «Protonenkurzschlusses» nicht genutzt werden – dies gelingt erst beim chemischen Ausschalten der falsch angeordneten Proteorhodopsine (rechts).
    Im Nanocontainer links kann die Energie wegen eines «Protonenkurzschlusses» nicht genutzt werden – d ...
    Dimitrios Fotiadis, Universität Bern.
    None


    Criteria of this press release:
    Journalists
    Biology, Chemistry
    transregional, national
    Research results
    German


     

    Im Nanocontainer links kann die Energie wegen eines «Protonenkurzschlusses» nicht genutzt werden – dies gelingt erst beim chemischen Ausschalten der falsch angeordneten Proteorhodopsine (rechts).


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).