idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
09/21/2016 10:07

Künstliche Intelligenz ermöglicht die Entdeckung neuer Materialien

Reto Caluori Kommunikation & Marketing
Universität Basel

    Mit Methoden der künstlichen Intelligenz haben Chemiker der Universität Basel die Eigenschaften von rund 2 Millionen Kristallen berechnet, die aus vier verschiedenen chemischen Elementen zusammengesetzt sind. Dabei konnten die Forscher 90 bisher unbekannte Kristalle identifizieren, die thermodynamisch stabil sind und als neuartige Werkstoffe in Betracht kommen. Das berichten sie in der Fachzeitschrift «Physical Review Letters».

    Elpasolith ist ein glasiges, transparentes, glänzendes und weiches Mineral mit kubischer Kristallstruktur. Erstmals entdeckt im El Paso County (USA), kann man es in den Rocky Mountains, in Virginia oder in den Apenninen finden. In experimentellen Datenbanken ist Elpasolith einer der häufigsten Kristalle, der aus vier verschiedenen chemischen Elementen besteht. Je nach ihrer Zusammensetzung können Elpasolithe metallische Leiter, Halbleiter oder Isolatoren sein, und manchmal können sie auch Licht emittieren, wenn sie Strahlung ausgesetzt werden.
    Diese Eigenschaften machen Elpasolithe zu interessanten Materialkandidaten für Szintillatoren (mit denen sich etwa bestimmte Teilchen nachweisen lassen) und andere Anwendungen. Aufgrund ihrer chemischen Komplexität ist es rechnerisch nachgerade unmöglich, die Stabilität und Eigenschaften aller theoretisch denkbaren Kombinationen von vier Elementen in der Elpasolithstruktur quantenmechanisch vorherzusagen.

    Statistische Analyse mithilfe von maschinellem Lernen

    Dank modernen Methoden der künstlichen Intelligenz ist es Felix Faber, Doktorand in der Gruppe von Prof. von Lilienfeld am Departement der Chemie der Universität Basel, nun gelungen, dieses Materialdesign-Problem zu lösen. Dazu berechnete er zunächst die quantenmechanische Vorhersagen von Tausenden von Elpasolithkristallen mit zufällig ausgewählter chemischer Zusammensetzung. Die Resultate nutzte er, um statistische, sogenannte Machine-Learning-Modelle (ML-Modelle), zu trainieren. Die so verbesserte algorithmische Herangehensweise erreichte eine prädiktive Genauigkeit, welche üblichen quantenmechanischen Näherungen entspricht.
    Die ML-Modelle haben den Vorteil, dass sie um viele Grössenordnungen schneller sind als die entsprechenden quantenmechanischen Berechnungen. Innerhalb eines Tages konnte das ML-Modell die Bildungsenergien – ein Indikator für die chemische Stabilität – für alle 2 Millionen Elpasolithkristalle vorhersagen, die man aus allen Hauptgruppenelementen des Periodensystems der Elemente theoretisch erhalten kann. Für die entsprechenden quantenmechanischen Berechnungen hätte hingegen ein Hochleistungsrechner über 20 Millionen Rechenstunden verbraucht.

    Unbekannte Materialien mit interessanten Eigenschaften

    Die Analyse der berechneten Eigenschaften hat zu neuen Erkenntnissen über diese Materialklasse geführt. Die Forscher konnten fundamentale Bindungstrends aufdecken und unter den 2 Millionen Kristallen 90 bisher unbekannte Kristalle identifizieren, die gemäss quantenmechanischen Vorhersagen thermodynamisch stabil sind.
    Aufgrund dieser potenziellen Eigenschaften wurden Elpasolithe in die Werkstoffdatenbank «Materials Project» aufgenommen, die eine zentrale Rolle innerhalb der Materials Genome Initiative spielt. Diese wurde 2011 von der US-amerikanischen Regierung lanciert, um mittels rechnerischer Unterstützung die Entdeckung und experimentelle Synthese neuartiger interessanter Materialien und Werkstoffe zu beschleunigen.
    Einige der neu entdeckten Elpasolithkristalle weisen exotische elektronische Eigenschaften und ungewöhnliche Zusammensetzungen auf. «Die Kombination von künstlicher Intelligenz, Big Data, Quantenmechanik und Hochleistungsrechnen ermöglicht vielversprechende neue Wege, um unser Verständnis von Materialien zu vertiefen und um neue Materialien zu entdecken, die bloss mithilfe von menschlicher chemischer Intuition nicht in Erwägung gezogen worden wären», kommentiert Studienleiter Prof. Anatole von Lilienfeld die Ergebnisse.
    Die Arbeit entstand in Zusammenarbeit mit Physikern der Universität Linköping (Schweden) und wurde auch im Rahmen des vom Schweizerische Nationalfonds geförderten Nationalen Forschungsschwerpunkts «MARVEL – Materials’ Revolution: Computational Design and Discovery of Novel Materials» durchgeführt.

    Originalbeitrag
    Felix Faber, Alexander Lindmaa, O. Anatole von Lilienfeld, and Rickard Armiento
    Machine Learning Energies of 2M Elpasolithe (ABC2D6) Crystals
    Physical Review Letters (2016), doi:10.1103/PhysRevLett.117.135502

    Weitere Auskünfte
    Prof. Dr. O. Anatole von Lilienfeld, Universität Basel, Departement Chemie, Tel. +41 61 267 38 45, E-Mail: anatole.vonlilienfeld@unibas.ch


    Images

    Die Matrix visualisiert die Bildungsenergie – ein Indikator für die Stabilität – von rund zwei Millionen möglichen Verbindungen
    Die Matrix visualisiert die Bildungsenergie – ein Indikator für die Stabilität – von rund zwei Mill ...


    Criteria of this press release:
    Journalists, Scientists and scholars, all interested persons
    Chemistry, Physics / astronomy
    transregional, national
    Research projects, Research results
    German


     

    Die Matrix visualisiert die Bildungsenergie – ein Indikator für die Stabilität – von rund zwei Millionen möglichen Verbindungen


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).