idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Thema Corona

Imagefilm
Science Video Project
idw-News App:

AppStore



Share on: 
10/03/2016 17:00

Licht schlägt Wellen im Magneten. Hocheffiziente Methode zur superschnellen Spinanregung entdeckt

Petra Riedl Referat II/2, Kommunikation
Universität Regensburg

Der Verarbeitungsgeschwindigkeit von magnetischen Datenspeichern in handelsüblichen Computern sind physikalische Grenzen gesetzt, die zum Teil bereits technisch ausgereizt sind. Ein internationales Forscherteam aus Regensburg, Nijmegen, Moskau und Berlin hat nun eine neuartige Wechselwirkung zwischen kurzen Lichtfeldern und magnetischen Materialien entdeckt, die es in Zukunft erlauben könnte, die Geschwindigkeit solcher Datenträger um das Zehntausendfache zu erhöhen. Die Forschungsergebnisse werden in der aktuellen Ausgabe der Fachzeitschrift „Nature Photonics“ vorgestellt.

Das dauerhafte Ablegen von Information in Computerfestplatten geschieht gewöhnlich auf magnetischen Materialien, beispielsweise einer Scheibe aus Eisen, Kobalt und Platin. Anschaulich kann man sich eine solche Scheibe als eine Ebene, gefüllt mit einer unvorstellbar großen Anzahl kleiner Kompassnadeln (im Fachjargon „Spins“ genannt), vorstellen. Zum Abspeichern von Informationen präpariert ein Schreibkopf in der Festplatte die Kompassnadeln in einer bestimmten Richtung. Die Orientierung von Nord- und Südpol dieser Nadeln repräsentiert dabei die binäre Information, aus denen Daten des Benutzers, wie Texte, Fotos und Filme, später wieder zusammengesetzt werden können. Die Speicherkapazität von Festplatten konnte in den letzten Jahrzehnten rapide vergrößert werden. Bei der Geschwindigkeit war dies bedauerlicherweise nicht der Fall und das Verarbeiten der heutzutage anfallenden riesigen Datenmengen wird zunehmend zum Problem. Inzwischen ist bei der Geschwindigkeit das physikalische Limit erreicht: Der Vorgang des Ummagnetisierens, also das Drehen der Spins mit dem Magneten des Schreibkopfes, kann nicht beliebig schnell erfolgen. Weltweit versuchen Forschergruppen daher in aufwändigen Studien neue Ansätze zu finden, um dieses fundamentale Problem zu umgehen.

Ein lange verfolgter Ansatz ist die Verwendung von kurzen Lichtimpulsen aus dem sichtbaren und nahinfraroten Spektralbereich, um die Richtung der Spins umzuschalten. Allerdings zeigte sich, dass sie in bisherigen Methoden nicht effizient genug mit dem Magneten wechselwirken. Als Folge davon würde man so starke Laserimpulse zum Umorientieren der Spins benötigen, dass das Speichermaterial beschädigt und unbrauchbar wird.


Ein Team um Prof. Rupert Huber vom Institut für Experimentelle und Angewandte Physik der Universität Regensburg und Dr. Rostislav Mikhaylovskiy sowie Prof. Alexey Kimel von der Radboud Universität in Nijmegen (Niederlande) hat nun eine neue Art der Wechselwirkung zwischen Lichtimpulsen und Spins realisiert, die wesentlich effizienter als bisherige Methoden funktioniert und Wege zu Datenspeichern der Zukunft mit einer zehntausendmal schnelleren Verarbeitungsrate eröffnen könnte.
Dazu verwendeten die Wissenschaftler die Regensburger Hochfeld-Terahertz-Quelle, die extrem kurze Lichtblitze bestehend aus einer einzelnen Lichtschwingung mit Wellenlängen im Grenzbereich zwischen Mikrowellen und sichtbarem Licht erzeugen kann. Die Forscher benutzten das elektrische Feld dieser Lichtblitze, um in einem Magneten gezielt die Elektronenorbitale zu beeinflussen – das heißt den Weg, auf dem sich die Elektronen um die Atomkerne herum bewegen. Interessanterweise hat dies in einigen Materialien einen starken Einfluss auf die Anordnung der Spins: Als Folge der neuen Ausrichtung der Elektronenorbitale wird auch der Spin der Elektronen blitzschnell gezwungen, seine Richtung anzupassen und es bilden sich Spinwellen aus. Ähnlich wie bei einer La-Ola-Welle im Fußballstadion bewegt sich nach der Anregung durch den Lichtimpuls eine Front von Spinoszillationen durch den Magneten. Im Gegensatz zu bisher bekannten Techniken ist diese Methode der magnetischen Anregung extrem effizient: Erhöht man die Stärke der Terahertz-Lichtimpulse beispielsweise um den Faktor zwei, ergibt sich eine vierfache Steigerung der Amplitude der Spinwelle. Gleichzeitig hinterlassen Terahertz-Impulse aufgrund ihrer geringen Photonenenergie keine ungewollten Spuren in der Probe: Die verwendete Energie fließt quasi komplett in die Bewegung der Spins und die Anregungsstärke kann fast beliebig erhöht werden.

Die Berechnungen der Wissenschaftler sagen voraus, dass eine weitere Verdreifachung der Terahertzfelder ausreichen könnte, um eine derart starke Wellenbewegung in den Spins auszulösen, dass sie dauerhaft ihre Richtung ändern – was dem Schreiben eines Bits in einer Festplatte entspräche. Dieser Schreibvorgang würde innerhalb von wenigen hundert Femtosekunden erfolgen (eine Femtosekunde ist der millionste Teil einer Milliardstel Sekunde) und damit etwa zehntausendmal so schnell wie das Schreiben einer Dateneinheit in einer heute üblichen Festplatte. Die Ergebnisse dieser Studie liefern einen wichtigen Beitrag zum grundlegenden Verständnis der Wechselwirkung von Licht und Magnetismus auf ultrakurzen Zeitskalen und sind von fundamentaler Bedeutung für die Informationstechnologie der Zukunft.

Ansprechpartner für Medienvertreter:
Prof. Dr. Rupert Huber
Universität Regensburg
Lehrstuhl für Experimentelle und Angewandte Physik
Telefon: 0941 943-2071
E-Mail: rupert.huber@physik.uni-regensburg.de

Dr. Rostislav Mikhaylovskiy
Radboud University
Institute for Molecules and Materials
Telefon: 0031 24365 3094
E-Mail: r.mikhaylovskiy@science.ru.nl


Addendum from 09/29/2016

Originalpublikation:

S. Baierl, M. Hohenleutner, T. Kampfrath, A.K. Zvezdin, A.V. Kimel, R. Huber and R.V. Mikhaylovskiy,

Nonlinear spin control by terahertz-driven anisotropy fields, Nature Photonics 2016

Publikation: DOI: 10.1038/NPHOTON.2016.181


Criteria of this press release:
Journalists
Information technology, Physics / astronomy
transregional, national
Research results, Scientific Publications
German


Ein intensiver Terahertz-Impuls (rote Wellenform) ändert die elektronischen Orbitale in einem magnetischen Material und führt zur Schwingung von Spins (Kompassnadeln).


For download

x

Help

Search / advanced search of the idw archives
Combination of search terms

You can combine search terms with and, or and/or not, e.g. Philo not logy.

Brackets

You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

Phrases

Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

Selection criteria

You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).