Nie zuvor haben Astrophysiker derart energiereiches Licht von einem so weit entfernten Himmelsobjekt gemessen. Vor etwa 7 Milliarden Jahren ereignete sich eine gewaltige Explosion am schwarzen Loch im Zentrum einer Galaxie. Es folgte ein intensiver Gammastrahlen-Ausbruch. Verschiedenen Teleskopen, darunter auch MAGIC, gelang es dieses Licht einzufangen. Quasi nebenbei ließ sich damit Einsteins Allgemeine Relativitätstheorie erneut bestätigen: Denn auf ihrem Weg zur Erde trafen die Lichtstrahlen auf ein näher gelegene Galaxie – und wurden von dieser so genannten Gravitationslinse umgelenkt.
Bei dem Objekt QSO B0218+357 handelt es sich um einen Blazar, eine besondere Spezies eines Schwarzen Loches. Man geht heute davon aus, dass sich im Zentrum aller Galaxien ein superschweres Schwarzes Loch befindet. Schwarze Löcher, in die gerade Materie stürzt, nennt man aktiv. Sie stoßen dabei extrem helle Jets aus. Weisen diese Ausbrüche in Blickrichtung der Erde, spricht man von einem Blazar.
Vollmond verhindert ersten MAGIC-Einsatz
Das jetzt in "Astronomy & Astrophysics" beschriebene Ereignis fand vor 7 Milliarden Jahren statt, als das Universum nicht einmal halb so alt war wie heute. "Entdeckt wurde der Blazar am 14. Juli 2014 zunächst vom Large Area Telescope (LAT) des Fermi-Satelliten", erläutert Razmik Mirzoyan, Wissenschaftler am Max-Planck-Institut für Physik und Sprecher der MAGIC-Kollaboration. "Sofort nahmen die auf der Erde stationierten Gammastrahlenteleskope den Blazar ins Visier, um mehr über das Objekt zu erfahren."
Eines dieser Teleskope war MAGIC auf der Kanareninsel La Palma, das auf sehr energiereiche Gammastrahlen spezialisiert ist: Es kann Photonen – Lichtteilchen – einfangen, deren Energie 100 Milliarden mal größer ist die von der unserer Sonne ausgesandten und tausendfach größer als die von Fermi-LAT gemessenen. Allerdings hatten die MAGIC-Wissenschaftler zunächst Pech: Wegen Vollmond konnte das Teleskop in der fraglichen Zeit nicht in Betrieb gehen.
Gravitationslinse lenkt extrem energiereiche Photonen ab
Elf Tage später erhielt MAGIC jedoch eine zweite Chance. Denn die von QSO B0218+357 freigesetzten Gammastrahlen gelangten nicht nur auf direktem Weg zur Erde: Eine Milliarde Jahre nach ihrem Aufbruch erreichten sie die Galaxie B0218+357G. Dort kam Einsteins Allgemeine Relativitätstheorie ins Spiel.
Sie besagt, dass eine große Masse im Universum, zum Beispiel eine Galaxie, Licht eines dahinter liegenden Objekt ablenkt. Außerdem wird das Licht wie in einer gigantischen optischen Linse gebündelt – einem entfernten Beobachter erscheint das Objekt viel heller, aber auch verzerrt. Außerdem passieren die Lichtstrahlen die Linse je nach Blickwinkel unterschiedlich schnell.
Diese Gravitationslinse war der Grund, das MAGIC QSO B0218+357 – und damit das weiteste Objekt im hochenergetischen Gammastrahlenspektrum – doch noch messen konnte. "Von Beobachtungen von Fermi und Radioteleskopen im Jahr 2012 wussten wir, dass die Photonen, die den längeren Weg nahmen, 11 Tage später ankommen würden", sagt Julian Sitarek von der Universität Łódz in Polen, der die Studie geleitet hat. "So konnten wir das erste Mal beobachten, dass hochenergetische Photonen von einer Gravitationslinse abgelenkt werden."
Verdopplung des Gammastrahlen-Universums
Dass energiereiche Gammastrahlen eines entfernten Himmelskörpers die Erdatmosphäre erreichen, ist alles andere als selbstverständlich. Das Weltall ist angefüllt mit niedrig-Energie-Photonen, die von Galaxien und Sternen stammen. "Viele Gammastrahlen gehen verloren, wenn sie mit diesen Photonen wechselwirken", so Mirzoyan. "Mit der MAGIC-Beobachtung hat sich der Bereich des Universums, den wir mit Gammastrahlen erschließen können, verdoppelt."
Die Tatsache, dass das Licht zum berechneten Zeitpunkt auf der Erde ankam, könnte einige Theorien über die Struktur des Vakuums ins Wanken bringen – allerdings sind dafür weitere Untersuchungen erforderlich. "Derzeit verweist die Beobachtung auf neue Möglichkeiten für Hochenergie-Gammastrahlen-Observatorien – und setzt ein Ausrufezeichen für die nächste Generation von Teleskopen im CTA-Projekt", resümiert Mirzoyan.
Publikation:
Detection of very high energy gamma-ray emission from the gravitationally-lensed blazar QSO B0218+357 with the MAGIC telescopes; MAGIC Collaboration; Astronomy & Astrophysics, DOI: http://dx.doi.org/10.1051/0004-6361/201629461
Kontakt:
Dr. Razmik Mirzoyan
Max-Planck-Institut für Physik
razmik.mirzoyan@mpp.mpg.de
+49 89 32354-328
https://www.mpp.mpg.de/aktuelles/meldungen/detail/umweg-ueber-gravitationslinse-...
Die MAGIC-Teleskope auf der Kanareninsel La Palma
Source: Robert Wagner
Das Bild zeigt den Effekt der Gravitationslinse: Die MAGIC-Teleskope empfingen energiereiche Gamma-P ...
Source: MAGIC-Aufnahme: Daniel Lopez/IAC; Hubble-Aufnahme von B0218+357G: NASA/ESA; AGN-Bild: NASA E/PO - Sonoma State University, Aurore Simonnet
Criteria of this press release:
Journalists
Physics / astronomy
transregional, national
Research results
German
Die MAGIC-Teleskope auf der Kanareninsel La Palma
Source: Robert Wagner
Das Bild zeigt den Effekt der Gravitationslinse: Die MAGIC-Teleskope empfingen energiereiche Gamma-P ...
Source: MAGIC-Aufnahme: Daniel Lopez/IAC; Hubble-Aufnahme von B0218+357G: NASA/ESA; AGN-Bild: NASA E/PO - Sonoma State University, Aurore Simonnet
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).