idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
11/21/2016 16:32

Research team at the CRTD identifies cells that form new bone during Axolotl finger regeneration

Franziska Clauß Presse- und Öffentlichkeitsarbeit
DFG-Forschungszentrum für Regenerative Therapien TU Dresden

    At the DFG-Center for Regenerative Therapies Dresden (CRTD) - Cluster of Excellence at the TU Dresden, a team of researchers lead by Joshua Currie, PhD, and Elly Tanaka, PhD, used live imaging during axolotl regeneration to identify the unique migration kinetics of various connective tissue cell types which choreograph their fate and tissue contribution during regeneration. The results were published in the scientific journal Developmental Cell on November 21, 2016.

    Dresden. The axolotl is a champion of regeneration, with the ability to completely regenerate the limb skeleton and heal wounds without forming scars. Understanding how this process happens holds promise to improve the outcome of bone regeneration after fracture as well reduce scaring during wound healing. After amputation of the axolotl limb, cells are recruited to the site of injury and build a mass of cells, called the blastema, which will build the lost portions of the limb. An outstanding question has been “Where exactly do the cells for the blastema come from?” Using a multi-color labeling technique and live imaging of regeneration in the axolotl fingertip, Currie et al. found that cells surrounding the bone and cells beneath the skin move into the wound site to build the lost skeleton of the fingertip. Finally, the team identified a growth factor, PDGF-BB (Platelet-derived growth factor BB), that was essential for activating cells to migrate to the site of injury and form the regenerative blastema.

    “In the future it will be important to understand how PDGF-BB, a growth factor also found in humans, is able to activate cells to migrate and if human wounds could benefit from treatment with PDGF-BB to recruit more cells to aid in regeneration and scar free healing,” says the study’s first author, Joshua Currie, PhD. Since 2011, Joshua Currie, PhD, has worked as a Postdoctoral Fellow at the CRTD. In 2011 he completed his Doctor of Philosophy at the University of North Carolina (Chapel Hill, North Carolina, USA). Before, he worked as a Research Assistant at Vanderbilt University (Nashville, Tennessee, USA).

    Elly Tanaka, PhD, Professor of Animal Models of Regeneration at the Technische Universität Dresden, in the DFG Research Center, Cluster of Excellence for Regenerative Therapies (CRTD) from 2008-2016. Since September 2016, Senior
    Scientist at the Research Institute of Molecular Pathology (IMP) in Vienna, Austria.

    Publication:
    “Live Imaging of Axolotl Digit Regeneration Reveals Spatiotemporal Choreography of Diverse Connective Tissue Progenitor Pools”
    DOI: http://dx.doi.org/10.1016/j.devcel.2016.10.013

    Related publications:
    Prayag Murawala, Elly M. Tanaka, Joshua D. Currie. ”Regeneration: The Ultimate Example of Wound Healing,” Seminars in Cell and Developmental Biology, 23(9), 954-962, 2012.

    Tanaka EM. The Molecular and Cellular Choreography of Appendage Regeneration. Cell. 2016 Jun 16;165(7):1598-608. DOI: 10.1016/j.cell.2016.05.038.

    Press Contact:
    Franziska Clauß, M.A.
    Press Officer
    Phone: +49 351 458 82065
    E-Mail: franziska.clauss@crt-dresden.de


    Images

    Joshua Currie and Elly Tanaka
    Joshua Currie and Elly Tanaka
    Source: © CRTD

    Brainbow Labeling
    Brainbow Labeling
    Source: © Joshua Currie, CRTD


    Criteria of this press release:
    Business and commerce, Journalists, Scientists and scholars, Students, all interested persons
    Biology, Chemistry, Medicine, Nutrition / healthcare / nursing
    transregional, national
    Research projects, Research results
    English


     

    Joshua Currie and Elly Tanaka


    For download

    x

    Brainbow Labeling


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).