idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
01/03/2017 11:37

Chemically Modified Insulin Is Available More Quickly

Olivia Poisson Kommunikation & Marketing
Universität Basel

    Replacing a hydrogen atom by an iodine atom in insulin, the hormone retains its efficacy but is available more rapidly to the organism. Researchers at the University of Basel were able to predict this effect based on computer simulations and then confirm it with experiments. The results have been published in the Journal of Biological Chemistry.

    Insulin is formed in the pancreas and regulates the blood glucose level. In the body it is stored as a zinc-bound complex of six identical molecules, called a hexamer. However, the physiologically active form is a single insulin monomer. Only when the body requires insulin the hexamer divides into monomers available for blood sugar regulation.

    Researchers attempt to control this disassembly process by developing artificial insulin preparations, in order to optimize clinical treatment of diabetes mellitus. By means of chemical modifications, the release and availability of insulin can be improved. One possible approach is to strategically replace individual atoms in a targeted manner. This results in what is known as an insulin analog, which differs from natural insulin in both structure and properties.

    Artificial insulin is released more rapidly

    The team led by Professor Markus Meuwly from the Department of Chemistry at the University of Basel has investigated this process in collaboration with researchers from the USA and Australia. The researchers exchanged a single hydrogen atom by an iodine atom which modulates intermolecular interactions that resulted in more rapid insulin disassembly and release.

    Introducing the iodine atom improved the insulins’ availability, while the affinity for the insulin receptor and the biological function remained unchanged when compared to the natural hormone. These advantageous properties were first predicted by a combination of quantum chemistry and molecular dynamics simulations. In a next step, the stability changes of the chemically modified insulin were directly probed by using crystallographic and nuclear magnetic resonance experiments which confirmed the computations.

    Clinical application possible

    The use of halogen atoms is a promising approach for compound optimization in medicinal chemistry. The results obtained for iodinated insulin demonstrate that the concept of chemical modification has also great potential in the field of protein engineering. A future clinical application of the insulin analog, which differs from natural insulin by only a single atom, is quite conceivable.

    Original source

    Krystel El Hage, Vijay Pandyarajan, Nelson B. Phillips, Brian J. Smith, John G. Menting, Jonathan Whittaker, Michael C. Lawrence, Markus Meuwly, Michael A. Weiss
    Extending Halogen-Based Medicinal Chemistry to Proteins: Iodo-Insulin as a Case Study
    Journal of Biological Chemistry (2016), doi: 10.1074/jbc.M116.761015

    Further information

    Prof. Dr. Markus Meuwly, University of Basel, Department of Chemistry, Tel. +41 61 207 38 21, email: m.meuwly@unibas.ch


    More information:

    https://www.unibas.ch/en/News-Events/News/Uni-Research/Chemically-Modified-Insul...


    Images

    Binding of the insulin analog (green) to the receptor (light blue). The receptor’s surface is shown in transparent gray.
    Binding of the insulin analog (green) to the receptor (light blue). The receptor’s surface is shown ...
    Source: University of Basel, Department of Chemistry


    Criteria of this press release:
    Journalists, Scientists and scholars
    Chemistry
    transregional, national
    Research results, Scientific Publications
    English


     

    Binding of the insulin analog (green) to the receptor (light blue). The receptor’s surface is shown in transparent gray.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).