Die Mikrochips könnten zukünftig in der abhörsicheren Datenübertragung eine Rolle spielen
Während in der makroskopischen Welt Chaos in der Regel lieber vermieden wird, können sich Quantenphysiker über diesen Zustand geradezu begeistern: „Chaos ist eine hochinteressante Eigenschaft unserer Systeme“, so Prof. Dr. Stephan Reitzenstein vom Institut für Festkörperphysik an der TU Berlin. Neben ihrer faszinierenden Physik spielen chaotische Systeme in der abhörsicheren Informationsübertragung eine große Rolle, da mit ihnen unter anderem Zufallszahlen für die Verschlüsselung von Daten generiert werden können. Für die Erzeugung chaotischer Signale wird unter anderem ein selbstpulsender Laser benötigt, also eine Lichtquelle, die unregelmäßig (chaotisch) Photonen emittiert, und ein entsprechend sensibler Detektor.
Prof. Dr. Stephan Reitzenstein und seinem Team in Kooperation mit der Arbeitsgruppe von Professor Lüdge und Kollegen der Universität Würzburg ist es jetzt im Rahmen seines ERC Consolidator Grants „EXQUISITE“ gelungen, Mikrolaser und Mikrodetektoren in einem Abstand von wenigen µm auf einem gemeinsamen Mikrochip zu integrieren und zu koppeln. Das gesamte System ist so winzig, dass es nur unter dem Mikroskop sichtbar ist.
In einer gerade erschienenen Veröffentlichung in dem renommierten Journal Optica, demonstrieren die Wissenschaftler, wie in diesem System das emittierte Laserlicht vor Ort detektiert und elektrisch verstärkt dem Laser wieder zugeführt wird. „Dieses kleine rückgekoppelte optische Netzwerk ist bei geeigneten Betriebsparametern äußerst instabil, was zu einem faszinierenden chaotischen Emissionsverhalten führt“, so Stephan Reitzenstein.
Miniaturisierte Halbleiterbauelemente auf engstem Raum gekoppelt bilden eine wichtige Grundlage für die moderne Informationstechnologie. In der aktuellen Forschung erreicht man dabei bereits das Quantenregime, in dem klassisch nicht erklärbare physikalische Effekte eine zentrale Rolle in der Bauteilfunktion spielen können.
Hier hat das entwickelte Mikrolaser-Mikrodetektor Konzept als integrierte Lichtquelle großes Anwendungspotential. So zeigt diese Lichtquelle bei optimierten Betriebsparametern „Selbstpulsen“, was zukünftig für die gezielt steuerbare Emission einzelner Lichtteilchen (Photonen) in äußerst kompakten Einzelphotonenquellen genutzt werden soll. Dies kann ebenfalls Anwendung in der Datenübertragung finden – in diesem Fall in der vollkommen abhörsicheren Quantenkommunikation durch die Informationsübertragung mittels einzelner Photonen.
Pierce Munnelly, Benjamin Lingnau, Matthias M. Karow, Tobias Heindel, Martin Kamp, Sven Höfling, Kathy Lüdge, Christian Schneider, and Stephan Reitzenstein: On-chip optoelectronic feedback in a micropillar laser-detector assembly, Optica 4, 303-306 (2017).
https://www.osapublishing.org/optica/abstract.cfm?uri=optica-4-3-303
Weitere Informationen erteilt Ihnen gern:
Prof. Dr. Stephan Reitzenstein
Technische Universität Berlin
Institut für Festkörperphysik
Tel.: +49 30 314-79704, Sekr: -22001
E-Mail: stephan.reitzenstein@physik.tu-berlin.de
Criteria of this press release:
Journalists, Scientists and scholars
Information technology, Physics / astronomy
transregional, national
Research results
German
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).