idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
05/18/2017 16:04

Wie Enzyme kommunizieren

Rudolf-Werner Dreier Presse- und Öffentlichkeitsarbeit
Albert-Ludwigs-Universität Freiburg im Breisgau

    Freiburger Wissenschaftler erklären Mechanismus in Zellen, der elektrische in chemische Signale umwandelt

    Die Enzyme Stickstoffmonoxid NO-Synthase (NOS1) und Proteinkinase C (PKC) spielen bei einer Vielzahl von Signalübertragungsprozessen in Nervenzellen des Gehirns wie auch in Zellen anderer Organe eine entscheidende Rolle. Die Wissenschaftlerinnen Dr. Cristina Constantin und Dr. Catrin Müller haben zusammen mit Prof. Dr. Bernd Fakler am Physiologischen Institut der Universität Freiburg erstmals gezeigt, dass sich die Enzyme unter physiologischen Bedingungen allein durch die elektrische Erregung an der Zellmembran aktivieren lassen. Durch direkte strukturelle Bindung der beiden Enzyme an spannungsgesteuerte Kalziumkanäle entstehen Proteinsuperkomplexe, die elektrische Signale an der Zellmembran mit hoher Geschwindigkeit und zielgerichtet in chemische Signalprozesse im Zellinneren umwandeln. Die Forschenden stellen ihre Arbeit in der aktuellen Ausgabe der Fachzeitschrift „Proceedings of the National Academy of Sciences (PNAS)“ vor.

    Die Arbeitsgruppe um Fakler zeigte in der Vergangenheit, dass die beiden kalziumabhängigen Enzyme NO-Synthase (NOS1) und Proteinkinase C (PKC) Bestandteile der Proteinumgebung bestimmter spannungsgesteuerter Kalziumkanäle (Cav2-Kanäle) im Gehirn sind. Bisher war jedoch nicht bekannt, wie die Enzyme mit den Kalziumkanälen kommunizieren. In seiner Arbeit hat das Forschungsteam bewiesen, dass die Enzyme hierzu einen Proteinsuperkomplex bilden. Darin sind NOS1 oder PKC und die Cav2-Kanäle strukturell miteinander vereinigt, was die beiden kalziumabhängigen Enzyme zum einem an der Innenseite der Zellmembran verankert und sie zum anderen in die unmittelbare Nähe der Kanalpore platziert. Wird die Zellmembran erregt, öffnen sich die Cav2-Kanäle und liefern Kalziumionen auf die Innenseite der Zellmembran, wo diese an die beiden Enzyme binden. Diese Bindung aktiviert die Enzyme, die dann entweder NO, einen frei beweglichen Botenstoff, erzeugen oder eine Phosphatgruppe auf zytoplasmatische Zielproteine übertragen.

    Wegen des geringen Abstandes zwischen Kanalpore und Enzym reichen Erregungen der Zellmembran von weniger als einer Millisekunde aus, um eine zuverlässige Enzymaktivität auszulösen. Maximale Wirkung der elektro-chemischen Kopplung wird erzielt, wenn die Zellmembran nicht von einzelnen Impulsen erregt wird, sondern die Nervenzelle Salven mit einer Frequenz von einem Hertz und mehr feuert.

    Die Cav2-Enzym-Superkomplexe garantieren aber nicht nur eine schnelle und zuverlässige elektro-chemische Koppelung. Sie sorgen auch dafür, dass die übertragenen Signale sehr lokal, also auf einen Bereich von wenigen Nanometern um die Cav2–Kanäle, begrenzt bleiben. Dadurch wird sichergestellt, dass die Enzyme nur die von ihnen initiierten zellulären Prozesse anstoßen, andere Kalzium-Signalwege, wie der gerichtete Zelltod, aber verhindert werden. Darüber hinaus haben die Experimente der Freiburger Forschenden einen Weg aufgezeigt, wie sich die Enzyme physiologisch aktivieren lassen. Dieser stellt eine Alternative zu den derzeit häufig benutzten künstlichen Aktivatoren, chemischen Stoffen wie den NO-Donoren oder den Diacylglyceriden, dar.

    Bernd Fakler ist Leiter der Abteilung II des Physiologischen Instituts und Bereichskoordinator am Exzellenzcluster BIOSS Centre for Biological Signalling Studies der Universität Freiburg.

    Originalpublikation:
    Constantin, C.E., Müller, C.S., Leitner, M., Bildl, W., Schulte, U., Oliver, D., and Fakler, B. (2017). Identification of Cav2-PKC and Cav2-NOS1 complexes as entities for ultrafast electro-mechanical coupling. Proc Natl Acad Sci USA (in press).

    Kontakt:
    Prof. Dr. Bernd Fakler
    Physiologisches Institut, Medizinische Fakultät / BIOSS Centre for Biological Signalling Studies
    Albert-Ludwigs-Universität Freiburg
    Tel.: 0761/203-5175
    E-Mail: bernd.fakler@physiologie.uni-freiburg.de

    Bildunterschrift:
    Elektro-chemische Kopplung durch Superkomplexe: Der Kalziumkanal (Cav2) liefert Kalziumionen (Ca2+), die das Enzym NO-Synthase (NOS) zur Herstellung des Botenstoffes NO aktivieren. Grafik: Bernd Fakler


    More information:

    https://www.pr.uni-freiburg.de/pm/2017/wie-enzyme-kommunizieren


    Images

    Bildunterschrift: Siehe Pressemitteilung
    Bildunterschrift: Siehe Pressemitteilung


    Criteria of this press release:
    Journalists
    Biology, Medicine, Nutrition / healthcare / nursing
    transregional, national
    Research projects, Research results
    German


     

    Bildunterschrift: Siehe Pressemitteilung


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).