Wissenschaftler aus Bremen und den USA haben Meerestiere entdeckt, die in Symbiose mit Bakterien leben, welche Öl als Energiequelle verwenden. In der Tiefsee im Golf von Mexiko gibt es Vulkane, die Öl und Asphalt speien. Dort leben Muscheln und Schwämme in Symbiose mit Bakterien, die ihnen Nahrung liefern. Diese Symbionten ernähren sich von kurzkettigen Alkanen aus dem Öl. Die Forscher entdeckten zudem, dass nah verwandte Bakterien diese Fähigkeit beim Abbau der Ölpest nach der Explosion der Ölbohrplattform Deepwater Horizon nutzten.
Gestank und Hitze, wenn ein neuer Straßenbelag aufgebracht wird; schwarze Klumpen am Strand, die an den Füßen kleben – Asphalt wirkt nicht wie ein gemütlicher Lebensraum. Dennoch kann er die Grundlage florierender Ökosysteme bilden - für Muscheln, Krebse, Würmer, Schwämme und viele andere Bewohner.
Asphaltvulkane voller Leben
In den Tiefen des Golfs von Mexiko tritt Öl und Asphalt aus dem Meeresboden und bildet bizarr anmutende Strukturen, die an erkaltete Lava erinnern – so genannte Asphaltvulkane. Vor fast 15 Jahren entdeckten Bremer und US-amerikanische Forscher diesen Lebensraum. Noch immer steckt er voller Überraschungen, wie eine nun in Nature Microbiology veröffentlichte Studie einer internationalen Forschergruppe um Maxim Rubin-Blum und Nicole Dubilier vom Bremer Max-Planck-Institut zeigt.
Symbiontische Bakterien verwenden eine neue Energie- und Kohlenstoffquelle
Die Campeche Knolls-Asphaltvulkane in etwa 3000 Metern Wassertiefe im Golf von Mexiko beheimaten eine diverse Lebensgemeinschaft. Doch wovon leben die Organismen?
„Den Asphalt und das Öl, die aus dem Boden treten, können sie nicht fressen, und andere Nahrungsquellen sind in der Tiefsee rar“, erklärt Rubin-Blum. „Darum haben sich einige von ihnen mit Bakterien zusammengetan, die ihnen aus der Patsche helfen: Diese können aus dem Öl sowohl Energie als auch lebenswichtigen Kohlenstoff gewinnen.“ Solche Bakterien haben Meeresforscher schon an anderen öl-reichen Standorten gefunden – allerdings als freilebende Mikroorganismen.
Verwöhnte Ringbrecher
Diese ölfressenden Bakterien gehören zur Gruppe Cycloclasticus. Ihren Namen, der „Ringbrecher“ bedeutet, verdanken sie einer besonderen Fähigkeit: Sie können schwer abbaubare Ringstrukturen im Öl, so genannte PAHs (polyzyklische aromatische Kohlenwasserstoffe), knacken und verwerten. Das ist ein mühseliger Prozess, der viel Energie verschlingt.
Die symbiotischen Cycloclasticus, die die Bremer Forscher an den Asphaltvulkanen entdeckt haben, machen sich die Sache leichter. Sie haben sich auf leicht abbaubare Bestandteile des Öls spezialisiert - so genannte kurzkettige Alkane wie Butan, Ethan und Propan. „Die Ringe der PAHs können diese Mikroorganismen gar nicht mehr knacken“, erklärt Rubin-Blum. „Sie haben die dazu notwendigen Gene verloren.“ Solche Cycloclasticus-Bakterien, die rein auf kurzkettige Alkane setzen und keine PAH-Ringe mehr knacken können, kannte man bisher nicht.
Weil kurzkettige Alkane so leicht zu verwerten sind, konkurrieren viele Mikroorganismen darum. Wie können es sich die symbiotischen Bakterien erlauben, auf eine so heiß umkämpfte Nahrung zu setzen und ihre außergewöhnlichen Ringbrecher-Fähigkeiten zu vernachlässigen? Und das, obwohl sie in einem Lebensraum leben, der reich an PAH-Ringen ist?
„Wir vermuten, dass sie sich diesen ‚Luxus’ nur leisten können, weil sie sich bei Muscheln und Schwämmen als Symbionten eingemietet haben“, erläutert Mitautorin Nicole Dubilier vom Bremer Max-Planck-Institut. „Ihre Wirte filtern das umliegende Meerwasser und liefern ihnen dadurch kontinuierlich kurzkettige Alkane. So leben sie konkurrenzfrei an einem geschützten Standort und müssen nicht mit freilebenden Bakterien konkurrieren.“
“Das ist das erste Mal, dass wir eine Symbiose auf Basis kurzkettiger Alkane finden”, fügt Rubin-Blum hinzu. Die vorliegende Studie erweitert damit das Spektrum an bekannten Stoffen, die chemosynthetische Symbiosen antreiben können.
Freilebende Verwandtschaft: Erst die Schmankerl, dann die zähen Happen
In einem weiteren Schritt verglichen Rubin-Blum, Dubilier und ihre Kollegen das Genom der symbiotischen Bakterien mit dem freilebender, nah verwandter Cycloclasticus-Arten. Diese traten im Golf von Mexiko nach der Deepwater Horizon-Ölkatastrophe in großen Zahlen auf. Tatsächlich konnte auch manche freilebende Art kurzkettige Alkane abbauen.
„Das war überraschend, denn bislang dachte man, Cycloclasticus können nur PAHs abbauen“, erklärt Dubilier. Kurzkettige Alkane sind vor allem unmittelbar nach einem Ölaustritt zu finden und werden schnell und von vielen Organismen abgebaut. Im Gegensatz zu den symbiotischen Bakterien sind die freilebenden aber weiterhin in der Lage, auch PAHs zu nutzen. „So bleiben sie flexibel. Sind die kurzkettigen Häppchen aufgebraucht, können sie immer noch die deutlich zäheren PAHs verwerten“, so Dubilier.
„Offensichtlich handelt es sich bei Cycloclasticus um eine Schlüsselfigur im marinen Ölabbau“, fügt Rubin-Blum hinzu. “Als nächstes wollen wir daher die Physiologie und den Stoffwechsel der symbiotischen und freilebenden Arten genau vergleichen, um so mehr über deren Beitrag zum Abbau von Kohlenwasserstoffen im Meer zu erfahren.”
Originalveröffentlichung
Maxim Rubin-Blum, Chakkiath Paul Antony, Christian Borowski, Lizbeth Sayavedra, Thomas Pape, Heiko Sahling, Gerhard Bohrmann, Manuel Kleiner, Molly C. Redmond, David L. Valentine, Nicole Dubilier (2017): Short-chain alkanes fuel mussel and sponge Cycloclasticus symbionts from deep-sea gas and oil seeps. Nature Microbiology.
DOI: 10.1038/nmicrobiol.2017.93
Beteiligte Institute
Max-Planck-Institut für Marine Mikrobiologie, Bremen
MARUM – Zentrum für Marine Umweltwissenschaften Universität Bremen
Department of Geoscience, Universität Calgary, Kanada
Department of Biological Sciences, Universität von North Carolina, Charlotte, USA
Department of Earth Science, Universität von Kalifornien, Santa Barbara, USA
Rückfragen bitte an
Dr. Maxim Rubin-Blum
Max-Planck-Institut für Marine Mikrobiologie
Telefon: +49 421 2028 905
E-Mail: mrubin@mpi-bremen.de
Prof. Dr. Nicole Dubilier
Max-Planck-Institut für Marine Mikrobiologie
Telefon: +49 421 2028 932
E-Mail: ndubilie@mpi-bremen.de
oder an die Pressestelle
E-Mail: presse@mpi-bremen.de
Dr. Fanni Aspetsberger
Telefon: +49 421 2028 947
Dr. Manfred Schlösser
Telefon: +49 421 2028 704
Der Tauchroboter MARUM-Quest sammelt Muscheln, die Cycloclasticus-Symbionten enthalten, und ölreiche ...
MARUM − Zentrum für Marine Umweltwissenschaften, Universität Bremen
None
Innerhalb von Zellen in den Kiemen von Bathymodiolus-Muscheln (Zellkern in blau) finden sich Cyclocl ...
Max-Planck-Institut für Marine Mikrobiologie, Bremen
None
Criteria of this press release:
Journalists
Biology, Chemistry, Environment / ecology, Geosciences, Oceanology / climate
transregional, national
Research results, Scientific Publications
German
Der Tauchroboter MARUM-Quest sammelt Muscheln, die Cycloclasticus-Symbionten enthalten, und ölreiche ...
MARUM − Zentrum für Marine Umweltwissenschaften, Universität Bremen
None
Innerhalb von Zellen in den Kiemen von Bathymodiolus-Muscheln (Zellkern in blau) finden sich Cyclocl ...
Max-Planck-Institut für Marine Mikrobiologie, Bremen
None
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).