idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
07/13/2017 15:33

Auf dem Weg zur biologischen Variante

Rudolf-Werner Dreier Presse- und Öffentlichkeitsarbeit
Albert-Ludwigs-Universität Freiburg im Breisgau

    Ein bakterielles Enzym ermöglicht Reaktionen, die Alternativen zu wichtigen großtechnischen chemischen Verfahren eröffnen

    Die Arbeitsgruppe von Prof. Dr. Oliver Einsle am Institut für Biochemie der Universität Freiburg beschäftigt sich seit langer Zeit mit der Funktionsweise der Nitrogenase – und stellt nun die erste dreidimensionale Strukturanalyse der vanadiumhaltigen Variante des Enzyms vor. Daniel Sippel gelang im Rahmen seiner Promotionsarbeit die Produktion und Kristallisation einer Vanadium-Nitrogenase und darauf aufbauend die Aufklärung der Raumstruktur bei atomarer Auflösung durch Röntgenbeugungsexperimente. Langfristiges Ziel der Arbeitsgruppe ist es, die Nitrogenase biotechnologisch nutzbar zu machen und dadurch eine Alternative zu großtechnischen chemischen Verfahren zu eröffnen. Die Forscher haben ihre Ergebnisse im Fachjournal „Nature Chemical Biology“ vorgestellt.

    Das Element Stickstoff (N) ist ein wesentlicher Bestandteil aller biologischen Makromoleküle. Seine Verfügbarkeit in der Biosphäre ist dadurch limitiert, dass das weltweite Vorkommen von Stickstoff weitgehend auf das Gas N2 in der Atmosphäre beschränkt ist, dessen Stabilität ihn für die allermeisten Organismen unzugänglich macht. Zur Bereitstellung von bioverfügbarem Stickstoff als Düngemittel in der Landwirtschaft existiert seit 1906 das industrielle Haber-Bosch-Verfahren, das Stickstoff mit Wasserstoff zu Ammoniak verbindet. Seine Bedeutung ist heute so zentral, dass die Nahrungsproduktion für mehr als die Hälfte der Menschheit nur mithilfe von Stickstoffdüngern gewährleistet werden kann. In der Natur bewerkstelligt ein einziges Enzym, die bakterielle Nitrogenase, die gleiche Reaktion, ohne jedoch überschüssige Stickstoffverbindungen in die Umwelt abzugeben – Stichwort: Nitrate im Grundwasser. Allerdings ist die Funktion dieses komplexen, metallhaltigen Enzymsystems bislang nur unvollständig geklärt.

    Einsles Arbeitsgruppe gelang schon zuvor ein wichtiger Schritt hin zum Verständnis der Nitrogenase: Die Forscherinnen und Forscher konnten die Aktivität des Enzyms durch das giftige Gas Kohlenmonoxid (CO) hemmen und zeigen, wie der Hemmstoff am Eisen-Molybdän-Cofaktor (FeMoco) bindet. Dieser ist das Zentrum der Nitrogenase so benannt nach den in ihm enthaltenen Elementen. FeMoco kann die Reaktion von Stickstoff und Wasserstoff katalysieren – die natürliche Version des Haber-Bosch-Verfahrens. Gleichzeitig war bekannt, dass eine Variante der Nitrogenase, die anstelle von Molybdän in ihrem aktiven Zentrum Vanadium benutzt und daher als FeVco bezeichnet wird, den Hemmstoff CO ebenfalls umsetzen kann. Produkt dieser Reaktion sind reduzierte Kohlenstoffverbindungen in Form kurzkettiger Kohlenwasserstoffe. Damit ist diese Reaktion die enzymatische Variante eines zweiten wichtigen chemischen Verfahrens, der Fischer-Tropsch-Synthese von Kohlenwasserstoffen, mit der großtechnisch Treibstoffe zum Beispiel aus Industrieabgasen hergestellt werden können.

    Die Vanadium-Nitrogenase aus einem freilebenden Bodenbakterium vermag also unter dessen natürlichen Umgebungsbedingungen die gleiche Syntheseleistung zu erbringen, die in den industriellen Verfahren nur unter extremem Druck und bei hohen Temperaturen möglich ist. Die Haber-Bosch- und Fischer-Tropsch-Verfahren werden jährlich weltweit zur Umsetzung hunderter Millionen Tonnen der jeweiligen Gase – N2 und CO – genutzt, sodass an der Möglichkeit einer nachhaltigen, biologischen Alternative ein erhebliches Forschungsinteresse besteht.

    Bei den Forschungsarbeiten zeigte sich, dass die Architektur des Enzyms zwar in großen Teilen der des molybdänhaltigen „Originals“ ähnelte, sich aber an einem wichtigen Punkt unterschied: dem atomaren Aufbau des katalytischen Cofaktors. Sippel und Einsle fanden, dass in FeVco tatsächlich ein Vanadiumion das Molybdänion ersetzt, aber zusätzlich ein Schwefelion des Zentrums durch ein – chemisch davon sehr verschiedenes – Carbonat-Anion ersetzt wird. Dieser nur auf den ersten Blick kleine Unterschied hat weitreichende Auswirkungen auf die geometrische und elektronische Struktur des Cofaktors.

    Die Arbeiten werden durch den Europäischen Forschungsrat (ERC) und die Deutsche Forschungsgemeinschaft im Rahmen des Graduiertenkollegs 1976 „Functional Diversity of Cofactors“ der Universität Freiburg und des Schwerpunktprogramms 1927 „Iron-Sulfur for Life“ gefördert.

    Originalpublikation:
    Daniel Sippel & Oliver Einsle (2017): The structure of vanadium nitrogenase reveals an unusual bridging ligand. In: Nature Chemical Biology.
    DOI: 10.1038/nchembio.2428

    Kontakt:
    Prof. Dr. Oliver Einsle
    Institut für Biochemie / BIOSS Centre for Biological Signalling Studies
    Albert-Ludwigs-Universität Freiburg
    Tel.: 0761/203-6058
    E-Mail: einsle@biochemie.uni-freiburg.de


    More information:

    https://www.pr.uni-freiburg.de/pm/2017/auf-dem-weg-zur-biologischen-variante


    Images

    Das katalytische Zentrum der vanadiumhaltigen Nitrogenase, ein Eisen-Vanadium-Cofaktor mit einem ungewöhnlichen Carbonat-Liganden.
    Das katalytische Zentrum der vanadiumhaltigen Nitrogenase, ein Eisen-Vanadium-Cofaktor mit einem ung ...
    Source: Grafik: Oliver Einsle


    Criteria of this press release:
    Journalists, Scientists and scholars
    Biology, Chemistry, Environment / ecology
    transregional, national
    Research results, Scientific Publications
    German


     

    Das katalytische Zentrum der vanadiumhaltigen Nitrogenase, ein Eisen-Vanadium-Cofaktor mit einem ungewöhnlichen Carbonat-Liganden.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).