Gene sind keine Einzelgänger. Wie Perlen auf einer Kette sind sie nebeneinander auf langen DNA-Molekülen, den Chromosomen, aufgereiht. Bis jetzt war wenig darüber bekannt, wie die Position eines Genes auf einem Chromosom seine Evolution beeinflusst. Eine neue Studie von Călin Guet, Professor am Institut of Science and Technology Austria (IST Austria) und Magdalena Steinrück, PhD Studentin in Guets Gruppe, zeigte, dass die Nachbarschaft eines Gens mitentscheidend ist, ob und wie sich die Aktivität des Gens in der Evolution verändert. Die Studie erschien heute im Open Access Journal eLife.
Von Bakterien bis hin zum Menschen hängt die Art und Weise, wie Lebewesen aussehen und funktionieren, auch davon ab, wie viel Produkte jedes Gens hergestellt werden, also wie aktiv die Gene sind. Die Aktivität eines Gens kann sich durch spontane Mutationen ändern, also durch vererbbare Veränderungen in der DNA. Diese können dazu führen, dass ein Lebewesen besser an seine Umgebung angepasst ist – oder schlechter. Zum Beispiel kann ein Bakterium, welches mehr von einem Protein erzeugt, das ein Antibiotikum ausschleust, überleben, während seine Mitstreiter von dem Antibiotikum getötet werden. In ihrer Studie wandten Steinrück und Guet experimentelle Evolution an, um zu untersuchen, wie die Position eines Gens auf dem Chromosom Mutationen beeinflusst, die die Aktivität des Gens erhöhen.
Die Forscher veränderten die DNA des Darmbakteriums Escherichia coli und fügten ein Gen für Antibiotika-Resistenz an verschiedenen Positionen des Bakterienchromosoms ein. Dieses Resistenzgen erlaubt es dem Bakterium, das Antibiotikum Tetracyclin aus der Zelle zu pumpen. Am Beginn des Experiments war das Gen fast vollständig ausgeschalten. Die Forscher fügten dann den Bakterien mehr und mehr Tetracyclin zu. Dadurch übten sie einen Selektionsdruck auf die Bakterien aus, das Gen durch Mutation zu aktivieren – denn eine höhere Produktion des Resistenzgens erlaubt es den Bakterien, mehr Antibiotikum herauszupumpen, so dass sie sich vermehren und überleben. Die Autoren fanden, dass die Bakterien wesentlich öfter überlebten, wenn sich das Resistenzgen an bestimmten Stellen des Chromosoms befand im Vergleich mit anderen Stellen. Das geschieht, weil die Nachbarschaft des Gens beeinflusst, welche Arten von aktivierenden Mutationen zur Verfügung stehen – manche Mutationen können nur vorkommen, wenn die benachbarten Gene dies zulassen.
“Wir zeigen, dass Gene Mutationen und das Anpassungspotential benachbarter Gene beeinflussen können. Die Organisation von Genen auf dem Chromosom ist daher sowohl Ursache als auch Wirkung von evolutionärer Veränderung“, erklärt Călin Guet. Dieses Ergebnis hat entscheidende Bedeutung, zum Beispiel für das globale Gesundheitsproblem Antibiotikaresistenz. Magdalena Steinrück: „Es ist vergleichbar mit der Entwicklung von Menschen: Menschen in unserer Nachbarschaft können einen großen Einfluss darauf haben, wie unsere Zukunft aussieht. Unsere Studie zeigt, dass Antibiotikaresistenz, die durch genaktivierende Mutationen entsteht, stark von der Nachbarschaft des Gens abhängt.“ Der Einfluss von chromosomaler Nachbarschaft wurde bisher nicht ausdrücklich untersucht. In Zukunft könnten solche Ergebnisse helfen, besser vorherzusagen, ob neue Antibiotikaresistenzen zu erwarten ist.
IST Austria
Das Institute of Science and Technology (IST Austria) in Klosterneuburg ist ein Forschungsinstitut mit eigenem Promotionsrecht. Das 2009 eröffnete Institut widmet sich der Grundlagenforschung in den Naturwissenschaften, der Mathematik und den Computerwissenschaften. Das Institut beschäftigt ProfessorInnen nach einem Tenure-Track-Modell und Post-DoktorandInnen sowie PhD StudentInnen in einer internationalen Graduate School. Neben dem Bekenntnis zum Prinzip der Grundlagenforschung, die rein durch wissenschaftliche Neugier getrieben wird, hält das Institut die Rechte an allen resultierenden Entdeckungen und fördert deren Verwertung. Der erste Präsident ist Thomas Henzinger, ein renommierter Computerwissenschaftler und vormals Professor an der University of California in Berkeley, USA, und der EPFL in Lausanne, Schweiz.
www.ist.ac.at
Wissenschaftlicher Kontakt:
Magdalena Steinrück
Erstautorin der Studie
magdalena.steinrueck@ist.ac.at
Originalartikel:
Magdalena Steinrueck and Călin Guet:
“Complex chromosomal neighborhood effects determine the adaptive potential of a gene under selection”, elife 25. Juli, 2017
https://doi.org/10.7554/eLife.25100
Resistente Bakterienkolonien mit einem fluoreszierenden Reporterprotein erscheinen im Laufe von drei ...
Magdalena Steinrück
None
Criteria of this press release:
Journalists, Scientists and scholars, all interested persons
Biology
transregional, national
Research results
German
Resistente Bakterienkolonien mit einem fluoreszierenden Reporterprotein erscheinen im Laufe von drei ...
Magdalena Steinrück
None
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).