idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
10/04/2017 09:28

Kolloidale Teilchen wechselwirken über lange Distanzen

Petra Giegerich Kommunikation und Presse
Johannes Gutenberg-Universität Mainz

    Mainzer Physiker bestimmen mit einfachem Modellsystem Wechselwirkungspotenziale von Kolloidteilchen

    Was die Fortbewegung von uns Menschen angeht, so gibt es nicht mehr allzu viel Neues zu entdecken: Wir laufen, rennen, gehen, hüpfen, kriechen mitunter auch mal auf allen Vieren – alles bekannt. Anders dagegen sieht es auf der Mikroskala aus: Teilchen von weniger als einem tausendstel Millimeter Größe, die fein verteilt in einem Trägermedium schwimmen, auch kolloidale Teilchen genannt, ein klassisches Beispiel ist die Milch, haben weitaus weniger Möglichkeiten zur Fortbewegung. Dazu kommt: Es ist bislang nur wenig darüber bekannt, wie solche kolloidalen Teilchen vorwärtskommen.

    "Marktschreier"-Teilchen ziehen andere an

    Forscher der Johannes Gutenberg-Universität Mainz (JGU) haben nun Licht in dieses Dunkel gebracht. Sie haben mikrometergroße Teilchen entdeckt, die eine spezielle Strömung erzeugen und andere Teilchen über diese anziehen. "Man kann sich diese Teilchen wie Marktschreier vorstellen, die mit ihren Rufen andere Personen auf den Markt locken", sagt Prof. Dr. Thomas Palberg vom Institut für Physik an der JGU. Der "Ruf" dieser Teilchen hallt weit. Obwohl sie nur einige Mikrometer groß sind, wirkt ihre Strömung noch in Millimeterabständen – die Reichweite ihrer Strömung übersteigt ihre eigene Größe also um ein Tausendfaches. Das Besondere: Die Forscher haben diese Teilchen nicht nur entdeckt, sondern ihre Anziehung vermessen und quantitativ beschrieben. Anders gesagt: Sie haben das Wechselwirkungspotenzial bestimmt. Auch fanden sie heraus, wie die Teilchen zu Marktschreiern werden, wie sie also die Strömung erzeugen. "Die Teilchen tauschen ihre Protonen, das sind positiv geladene Wasserstoffionen, gegen Verunreinigungen aus. Dadurch entsteht ein pH-Gradient, die elektrischen Ladungen werden getrennt, die Raumladungszone setzt sich in Bewegung und zieht das umgebende Wasser mit – es entsteht eine Strömung", beschreibt Palberg. Den gesamten Prozess der Fortbewegung können die Wissenschaftler rund um Prof. Dr. Thomas Palberg im Computer nachbilden und simulieren. Für ihre Experimente nutzen sie negativ geladene Plastikkügelchen, die in salzarmem oder destilliertem Wasser schwimmen. Diese Kügelchen untersuchen sie mit Videomikroskopie und anderen optischen Methoden.

    Teilchen lagern sich in festem Abstand an

    Zwar reicht die Anziehung, die die "Marktschreier-Teilchen" mit ihrer Strömung erzeugen, millimeterweit. Allerdings ist sie nicht überall gleich stark. Es gilt: Teilchen, die sich in der Nähe der Marktschreier befinden, werden stärker angezogen als weit entfernte Partikel. Kommen sie dem Marktschreier jedoch zu nah, schlägt die Anziehung ins Gegenteil um – die Teilchen werden abgestoßen. Das führt dazu, dass die Teilchen sich im Abstand von einem Partikeldurchmesser rund um den Marktschreier anordnen – ähnlich wie Menschen dies beim "Wohlfühlabstand" auch tun.

    Einfaches Modellsystem für weitere Forschungen

    Doch wofür lassen sich diese Erkenntnisse nutzen? "Die kolloidale Suspension, die wir entwickelt haben, dient als einfaches Modellsystem. Mit diesem können wir zum einen Computersimulationen überprüfen und validieren, zum anderen Situationen untersuchen, in denen sich das System nicht im Gleichgewicht befindet – also etwa den Transport auf der Mikroskala. Interessant ist das beispielsweise für selbstorganisierende Beschichtungstechniken, wo man genau wissen will, wie sich die Teilchen zur zu beschichtenden Oberfläche hinbewegen. Oder auch für Drug Delivery, bei dem das Medikament über kleine 'Transporter' direkt an die Stelle im Körper gelotst wird, an der es benötigt wird", erläutert Palberg.

    Abbildung:
    http://www.uni-mainz.de/bilder_presse/08_physik_KOMET_kolloidale_molekuele.jpg
    Gemessene Teilchenbahnen über einen Zeitraum von fünf Minuten. Aufgrund der wechselseitigen Anziehung bilden sich "Moleküle", Aggregate von Teilchen, deren Dynamik und Struktur gut mit den theoretischen Vorhersagen übereinstimmen.
    Abb./©: Thomas Speck, JGU

    Veröffentlichung:
    Ran Niu, Thomas Palberg, Thomas Speck
    Self-Assembly of Colloidal Molecules due to Self-Generated Flow
    Physical Review Letters, 11. Juli 2017
    DOI: 10.1103/PhysRevLett.119.028001
    https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.028001

    Weitere Informationen:
    Prof. Dr. Thomas Palberg
    Physik der Kondensierten Materie (KOMET)
    Institut für Physik
    Johannes Gutenberg-Universität Mainz
    55099 Mainz
    Tel. +49 6131 39-23638
    Fax +49 6131 39-23791
    E-Mail: palberg@uni-mainz.de
    http://kolloid.physik.uni-mainz.de/people01.php


    More information:

    http://kolloid.physik.uni-mainz.de/ ;
    http://www.uni-mainz.de/presse/75625.php – Pressemitteilung "Mainzer Physiker finden entscheidendes Puzzleteil zur Erklärung der Glasbildung" (01.06.2016) ;
    http://www.uni-mainz.de/presse/74438.php – Pressemitteilung "Mainzer Wissenschaftler entdecken überraschendes Phänomen bei der Kristallbildung" (12.02.2016)


    Images

    Criteria of this press release:
    Journalists, Scientists and scholars
    Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).