idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
11/06/2017 14:43

TU Berlin: Kohlendioxid als Rohstoff nutzen

Stefanie Terp Stabsstelle Presse, Öffentlichkeitsarbeit und Alumni
Technische Universität Berlin

    Chemiker der TU Berlin um Prof. Dr. Peter Strasser aus dem Fachgebiet „Elektrochemische Katalyse und Materialien“ ließen sich von der Biokatalyse zu einem neuen Katalysator für die Kohlendioxidreduktion inspirieren.

    Kohlendioxid als Rohstoff nutzen

    Chemiker der TU Berlin um Prof. Dr. Peter Strasser aus dem Fachgebiet „Elektrochemische Katalyse und Materialien“ ließen sich von der Biokatalyse zu einem neuen Katalysator für die Kohlendioxidreduktion inspirieren.

    Kohlendioxid (CO2) ist weitgehend als klimaschädliches Abgas bekannt. Die immer wiederkehrende Frage ist, ob und wie man dieses Gas auch als Rohstoff nutzen könnte. Ein Thema, das unter anderem für Industrien interessant ist, die zum Beispiel große Mengen Kohlenmonoxid (CO) für die Herstellung von Polycarbonat oder Polyurethan benötigen. Dabei handelt es sich um thermoplastische Kunststoffe, die zum Beispiel bei der Herstellung von CDs, Brillen und Schutzgläsern (Polycarbonat) oder Schwämmen, Armaturenbretter und Schaumstoff (Polyurethan) genutzt werden.

    „Das im Produktionsprozess benötigte Kohlenmonoxid wird bislang aus Methan, einem fossilen Brennstoff, gewonnen“, erläutert Prof. Dr. Peter Strasser von der TU Berlin. „Ein Prozess, bei dem nicht nur fossile Brennstoffe verbraucht werden, sondern bei dem zusätzlich auch noch Kohlendioxid entsteht. Die Frage war, ob man das Kohlenmonoxid unbedingt aus Methan gewinnen muss oder ob es nicht auch eine Möglichkeit gibt, es effektiv aus CO2 zu gewinnen? Die Antwort darauf ist: Ja, elektrochemisch geht das und dieser Prozess wird zurzeit intensiv untersucht, unter anderem auch von Industriepartnern wie der Firma Covestro. Das Problem: Der beste bislang bekannte Katalysator für diese Elektrolyse ist immer noch relativ unspezifisch und benötigt zusätzlich noch Gold oder Silber in seinem reaktiven Zentrum – ist also relativ kostenintensiv.“

    In einem im Rahmen von Horizon2020 geförderten Gemeinschaftsprojekt der Technischen Universität Dresden, der Ruhr Universität Bochum, der Universität Kopenhagen und der TU Berlin als Konsortiumsführer hat sich die Arbeitsgruppe um Peter Strasser mit einem bioinspirierten Katalysator beschäftigt, dessen aktives Zentrum sich an das aktive Zentrum des Hämoglobins, das sogenannte Porphyrin, anlehnt. Es enthält in seinem aktiven Zentrum vier Stickstoff-Atome und in der Mitte ein Metall-Atom. Genau dieses aktive Zentrum wurde als Festkörper hergestellt. Es gab bereits theoretische Vorhersagen, dass diese sogenannten Porphyrin-Motive elektrochemisch nicht nur Sauerstoff reduzieren können, sondern sehr selektiv aus Kohlendioxid Kohlenmonoxid machen können. Eines der wenigen Nebenprodukte ist zum Beispiel Wasserstoff. Die entscheidende Rolle spielt dabei das zentrale Metall. Es bindet das CO2 Molekül und macht daraus über verschiedene Zwischenstufen Kohlenmonoxid. Wie effektiv diese Kohlenmonoxid-Produktion ist, hängt dabei sehr wesentlich von dem Metall im aktiven Zentrum des Katalysators ab.

    „Wir haben unter anderem Nickel und Eisen als zentrales Atom in dem Katalysator untersucht. Nickel zum Beispiel ist ein besonders interessantes Derivat, da es das Kohlenmonoxid nur schwach bindet und es relativ leicht wieder als Gas entlässt. Enthält das aktive Zentrum dagegen Eisen, liegt die Produktion von Kohlenmonoxid anfangs zwar höher als beim Nickel, allerdings wird das Kohlenmonoxid deutlich stärker gebunden. Als eine Folge davon wird der Katalysator auch deutlich schneller blockiert. Im Vergleich von den verschiedenen Katalysator-Derivaten konnten wir belegen, dass zumindest im Labormaßstab ein zu 99 Prozent kohlenstoffbasierter Katalysator mit Nickel in seinem aktiven Zentrum effektiver und selektiver Kohlenmonoxid aus Kohlendioxid herstellt, als die bekannten Gold- und Silber-Katalysatoren“, beschreibt Peter Strasser die Versuchsergebnisse.

    Wurden diese Katalysatoren bislang im Labormaßstab untersucht, werden sie nun im Grammbereich hergestellt und bei dem Industriepartner Covestro in einer Mini-Testanlage getestet.

    Katharina Jung

    Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2
    Wen Ju, Alexander Bagger, Guang-Ping Hao, Ana Sofia Varela, Ilya Sinev, Volodymyr Bon, Beatriz Roldan Cuenya, Stefan Kaskel, Jan Rossmeisl & Peter Strasser
    Nature Communications 8, Article number: 944(2017), DOI:10.1038/s41467-017-01035-z

    Weitere Informationen erteilt Ihnen gerne:
    Prof. Dr. Peter Strasser
    TU Berlin
    Fachgebiet Elektrochemische Katalyse und Materialien
    Tel.: 030/314-29542
    E-Mail: pstrasser@tu-berlin.de


    Images

    Criteria of this press release:
    Journalists
    Chemistry, Environment / ecology
    transregional, national
    Research projects
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).