idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
12/21/2017 22:11

Exploring the phenomenon of superconductivity

Marietta Fuhrmann-Koch Kommunikation und Marketing
Universität Heidelberg

    Using ultracold atoms, researchers at Heidelberg University have found an exotic state of matter where the constituent particles pair up when limited to two dimensions. The findings from the field of quantum physics may hold important clues to intriguing phenomena of superconductivity. The results were published in Science magazine.

    Press Release
    Heidelberg, 21 December 2017

    Exploring the phenomenon of superconductivity
    Fermions in flatland pair up at very high temperatures: Heidelberg physicists find evidence of an exotic state of matter

    Using ultracold atoms, researchers at Heidelberg University have found an exotic state of matter where the constituent particles pair up when limited to two dimensions. The findings from the field of quantum physics may hold important clues to intriguing phenomena of superconductivity. The results were published in Science magazine.

    Superconductors are materials through which electricity can flow without any resistance once they are cooled below a certain critical temperature. The technologically most relevant class of materials, with exceptionally high critical temperatures for superconductivity, is poorly understood so far. There is evidence, however, that in order for superconductivity to occur, a certain type of particles – the fermions – must pair up. Moreover, research has shown that materials which become superconducting at relatively high temperatures have layered structures. “This means that electrons in these systems can only move in two-dimensional planes”, explains Prof. Dr Selim Jochim of Heidelberg University’s Institute for Physics, who heads the project. “What we did not understand until now was how the interplay of pairing and dimensionality can lead to higher critical temperatures.”

    To explore this question, researchers at the Center for Quantum Dynamics performed experiments in which they confined a gas of ultracold atoms in two-dimensional traps which they created using focused laser beams. “In solid-state materials like copper oxides, there are many different effects and impurities that make these materials difficult to study. That is why we use ultracold atoms to simulate the behaviour of electrons in solids. This allows us to create very clean samples and gives us full control over the essential system parameters”, says Puneet Murthy, a PhD student at the Center for Quantum Dynamics at Heidelberg University and one of the lead authors of this publication.

    Using a technique known as radio-frequency spectroscopy, the researchers measured the response of the atoms to a radio-wave pulse. From this response, they could tell exactly whether or not the particles were paired and in what way. These measurements were also performed for different strengths of interaction between fermions. In the course of the experiments, the researchers discovered an exotic state of matter. Theory states that fermions with a weak interaction should pair up at the temperature at which they become superconductive. However, when the scientists increased the interaction between fermions, they found that pairing occurred at temperatures several times higher than the critical temperature.

    “To achieve our ultimate goal of better understanding these phenomena, we will start with small systems that we put together atom by atom”, says Prof. Jochim. The research project also involved scientists from Heidelberg University’s Institute for Theoretical Physics and from Simon Fraser University in Vancouver (Canada).

    Original publication:
    P. A. Murthy, M. Neidig, R. Klemt, L. Bayha, I. Boettcher, T. Enss, M. Holten, G. Zuern, P. Preiss, S. Jochim: High Temperature Pairing in a strongly interacting two-dimensional Fermi gas. Science (published online on 21 December 2017), doi: 10.1126/science.aan5950

    Contact:
    Prof. Dr Selim Jochim
    Institute for Physics
    Center for Quantum Dynamics
    Phone +49 6221 54-19472
    jochim@uni-heidelberg.de

    Communications and Marketing
    Press Office
    Phone +49 6221 54-2311
    presse@rektorat.uni-heidelberg.de


    More information:

    http://ultracold.physi.uni-heidelberg.de/


    Images

    Criteria of this press release:
    Journalists, Scientists and scholars
    Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).