idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
02/19/2018 14:10

Stabile Gashydrate lösen Hangrutschung aus

Dr. Andreas Villwock Kommunikation und Medien
GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

    Genau wie Lawinen an Land können Hangrutschungen unter Wasser verschiedene Ursachen haben. Immer wieder werden entsprechende Ereignisse mit instabilen Gashydraten im Meeresboden in Verbindung gebracht. Wissenschaftlerinnen und Wissenschaftler des GEOMAR Helmholtz-Zentrums für Ozeanforschung Kiel haben jetzt Belege dafür gefunden, dass der Zusammenhang ein anderer sein könnte. Die Studie erscheint heute in der internationalen Fachzeitschrift Nature Communications.

    Mitte der 1990er Jahre konnten unter anderem deutsche Forscher nachweisen, dass in den Kontinentalhängen am Rand aller Ozeane große Mengen an Gashydraten eingeschlossen sind. Diese festen, eisartigen Verbindungen aus Wasser und Gasen galten seitdem als eine Art Zement, der die Hänge unter Wasser festigt. Doch die Gashydrate sind nur bei hohem Druck und niedrigen Temperaturen stabil. Deshalb gibt es Überlegungen, ob steigende Wassertemperaturen die Hydrate auflösen und dabei auch Hangrutschungen und in deren Folge Tsunamis auslösen könnten. Dass viele fossile Rutschungen im Bereich von Gashydratlagerstätten liegen, nährt diese Vermutung.

    Jetzt haben Forschende des GEOMAR Helmholtz-Zentrums für Ozeanforschung Kiel zusammen mit Kollegen der Christian-Albrechts-Universität zu Kiel und des Alfred-Wegener-Instituts Helmholtz-Zentrum für Polar- und Meeresforschung Belege dafür gefunden, dass Gashydrate und Hangrutschungen tatsächlich ursächlich zusammenhängen können – aber ganz anders als bisher vermutet. „Unsere Daten zeigen, dass ausgerechnet stabile Gashydrate indirekt das Sediment über ihnen destabilisieren können“, sagt Dr. Judith Elger vom GEOMAR. Sie ist Erstautorin der Studie, die heute in der internationalen Fachzeitschrift Nature Communications erscheint.

    Den Anstoß für die Untersuchung gab eine Ungereimtheit bei bisherigen Theorien, die schmelzende Gashydrate als Ursache von Hangrutschungen sehen. Denn die Wassertiefen stimmten nicht. „Wenn steigende Wassertemperaturen oder fallende Meeresspiegel Gashydrate destabilisieren, dann zuerst im oberen Bereich des Kontinentalhangs. Die Rutschungen, deren Spuren wir kennen, wurden aber alle tiefer ausgelöst“, erklärt Dr. Elger.

    Um diesem Widerspruch aufzulösen, hat sich die Geophysikerin seismische Daten aus dem Gebiet der Hinlopen-Rutschung angesehen. Diese ereignete sich vor etwa 30.000 Jahren nördlich von Spitzbergens in 750 bis 2.200 Metern Wassertiefe. Mit diesen Daten hat das Team anschließend die Vorgänge im Meeresboden in einem Computermodell nachvollzogen.

    Dabei kam heraus, dass die Gashydrate eine feste, undurchlässige Schicht im Meeresboden bilden können. Darunter sammeln sich freies Gas und Flüssigkeiten. Es entsteht ein Überdruck unterhalb der Hydratschicht, bis diese nicht mehr standhält. Freies Gas und Flüssigkeiten steigen in den durch den Überdruck verursachten Rissen, die heute noch im Untergrund nachweisbar sind, schnell Richtung Meeresboden auf. Dort treffen sie auf ohnehin weniger stabiles Sediment und setzen es in Bewegung.
    „Wir konnten zeigen, dass dieser Prozess im Fall der Hinlopen-Rutschung eine realistische Alternative zu anderen vermuteten Prozessen ist, völlig unabhängig von klimatischen Veränderungen. Es fehlen aber noch wichtige Informationen über das Verhalten von Sedimenten mit Gashydraten, um unsere Modelle zu verbessern“, sagt Dr. Elger.

    Die Studie zeigt aber auf jeden Fall Zusammenhänge, die bisher bei der Suche nach Ursachen von Hangrutschungen nicht berücksichtigt wurden. „Weitere Studien, die seismische Daten und geotechnische Laborversuche kombinieren, müssen jetzt zeigen, ob auch an anderen historischen Rutschungen ähnliche Rissstrukturen im Meeresboden nachgewiesen werden können und ob es sich damit um ein verbreitetes Phänomen handelt“, so die Forscherin.

    Originalarbeit:
    Elger, J., C. Berndt, L. Rüpke, S. Krastel, F. Gross, W. H. Geissler (2018): Submarine slope failure due to pipe structure formation. Nature Communications, http://dx.doi.org/10.1038/s41467-018-03176-1


    More information:

    http://www.geomar.de Das GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel
    http://www.geomar.de/go/hosst Die Helmholtz Research School for Ocean System Science and Technology (HOSST)


    Images

    Criteria of this press release:
    Journalists, all interested persons
    Geosciences, Oceanology / climate
    transregional, national
    Research results
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).