idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
03/16/2018 16:15

Signaling Pathways to the Nucleus

Rudolf-Werner Dreier Presse- und Öffentlichkeitsarbeit
Albert-Ludwigs-Universität Freiburg im Breisgau

    Researchers have demonstrated how auxin, a hormone that controls many processes in plants, reaches its destination

    A team of researchers from the University of Freiburg have discovered how the plant hormone auxin is transported within the cell and how this signaling pathway helps to control gene expression in the nucleus. Auxin regulates many processes in plants: from embryonic development, to the development of organs, all the way to responses to changes in the environment. The team recently published its research in the journal Cell Reports.

    According to current scientific models, auxin works with other proteins to fulfill its function. When auxin content in the nucleus rises, receptors bind in the presence of auxin repressors, initiate repressor degradation and enable auxin responsive transcription factors to trigger gene expression. Because it is believed that auxin content in the nucleus is important for this, the researchers focused on how auxin gets into the nucleus and how this process is controlled. The researchers from the University of Freiburg therefore collaborated with colleagues from Munich and Okayama, Japan, to test new, fluorescent, auxin-mimicking molecules in single cells. These molecules allowed them to visualize the accumulation of auxin in the cell without triggering any auxin-related processes. They were thus able to demonstrate that the auxin-mimicking molecules accumulated primarily in the endoplasmic reticulum (ER), which is a system of flat tubules that is a continuation of the nuclear membrane directly connected to the nucleus.

    Next, the team studied how the ER, nucleus, and other cell parts work together to absorb auxin in the nucleus. Because there are currently no adequate methods of directly measuring the transport of auxin between the cell’s different compartments, the researchers developed a combined experimental-theoretical approach that allows them to use a combination of microscopy, quantitative data analysis, and mathematical modeling to observe how individual plant cells react to different auxin levels. Based on the results of their research, they concluded that the flow of auxin from the ER to the nucleus represents an important signaling pathway within the cell to regulate auxin levels in the nucleus, and hence in supporting processes triggered by auxin.

    The team of researchers includes Dr. Cristina Dal Bosco, Dr. Alexander Dovzhenko, and Prof. Dr. Klaus Palme, all from the Department of Molecular Plant Physiology of the Institute of Biology II, as well as Dr. Alistair Middleton and Prof. Dr. Christian Fleck, both from the Center for Biological Systems Analysis (ZBSA) at the University of Freiburg. Dr. Palme is also a member of the cluster of excellence BIOSS Centre for Biological Signalling Studies.

    Original Publication:
    Middleton, A. M., Dal Bosco, C, Chlap, P, Bensch, R., Harz, H., Ren, F., Bergmann, S., Wend, S., Weber, W., Hayashi, K., Zurbriggen, M.D., Uhl, R., Ronneberger, O., Palme, K., Fleck, C., Dovzhenko, A. (2018): Data-driven modeling of intracellular auxin fluxes indicates a dominant role of the ER in controlling nuclear auxin uptake. Cell Reports.
    www.cell.com/cell-reports/fulltext/S2211-1247(18)30269-9

    Contact:
    Prof. Dr. Klaus Palme
    Institute of Biology II
    University of Freiburg
    Phone: +49 (0)761/203 - 2954
    E-Mail: klaus.palme@biologie.uni-freiburg.de

    Caption:
    The hormone auxin controls many processes in plants. Source: Institute of Biology II/University of Freiburg


    More information:

    https://www.pr.uni-freiburg.de/pm-en/press-releases-2018/signaling-pathways-to-t...


    Images

    Caption see text.
    Caption see text.

    None


    Attachment
    attachment icon Signaling Pathways to the Nucleus

    Criteria of this press release:
    Journalists
    Biology, Chemistry, Medicine
    transregional, national
    Research projects
    English


     

    Caption see text.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).