idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
04/03/2018 11:46

German-French team of researchers discovers anti-aging in metallic glasses

Thomas Richter Öffentlichkeitsarbeit
Georg-August-Universität Göttingen

    Metallic glasses and humans inhabit the same universe: they age. In time, their physical properties change towards a distinct direction. Researchers from the University of Göttingen and the European Synchrotron ESRF in Grenoble have now discovered a surprising effect in ultrastable metallic glasses. When subjected to typical aging conditions, this new class of metallic glasses evolved inversely – they showed anti-aging.

    Press release No. 68/2018

    Reversed evolution
    German-French team of researchers discovers anti-aging in metallic glasses

    (pug) Metallic glasses and humans inhabit the same universe: they age. In time, their physical properties change towards a distinct direction. Researchers from the University of Göttingen and the European Synchrotron ESRF in Grenoble have now discovered a surprising effect in ultrastable metallic glasses. When subjected to typical aging conditions, this new class of metallic glasses evolved inversely – they showed anti-aging. The results were published in Physical Review Letters.

    Unlike conventional metals, metallic glasses have a disordered atomic structure. This disorder is central to their behavior and enhances their properties with respect to conventional metals. A metallic glass is harder and simultaneously more elastic than a conventional metal. This characteristic makes metallic glasses especially interesting for highly demanding applications such as surgical implants. Unfortunately, their intrinsic disorder makes the atomic structure unstable. It changes spontaneously and causes their physical properties to change – the metallic glass ages.

    “The source of its advantage is also the weak point of a metallic glass and forms a huge drawback in terms of usability,” explains Martin Lüttich, PhD student at Göttingen University’s I. Physical Institute and co-author of the study. “This is a crucial problem for applications which rely on the constancy and permanence of the used material.” The studied ultrastable metallic glass is produced on a new path of glass formation and benefits from a drastically enhanced mobility of the atoms during preparation. This leads to enhanced properties compared to conventionally produced metallic glasses.

    “Since on the microscopic scale both conventional and ultrastable metallic glasses behave rather similarly, our discovery of anti-aging in ultrastable metallic glasses came as a surprise,” says Lüttich. The unexpected finding is an important piece of knowledge in understanding the underlying mechanisms of structural dynamics in metallic glasses and in tailoring them for application.

    Original publication: Martin Lüttich et al. Anti-aging in ultrastable metallic glasses. Physical Review Letters 2018. Doi: 10.1103/PhysRevLett.120.135504.

    Contact:
    Martin Lüttich
    University of Göttingen
    Faculty of Physics – I. Physical Institute
    Phone: +33 4 76 88 4536
    Email: mluetti1@gwdg.de


    More information:

    http://www.uni-goettingen.de/en/sh/39787.html


    Images

    Two-time correlation function, depicting spontaneous structural dynamics of an ultrastable metallic glass.
    Two-time correlation function, depicting spontaneous structural dynamics of an ultrastable metallic ...
    Photo: University of Göttingen
    None

    Martin Lüttich
    Martin Lüttich
    Photo: University of Göttingen
    None


    Criteria of this press release:
    Journalists, all interested persons
    Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    English


     

    Two-time correlation function, depicting spontaneous structural dynamics of an ultrastable metallic glass.


    For download

    x

    Martin Lüttich


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).