A team of scientists from ETH Zurich in Switzerland and the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg have, for the first time, unraveled the electronic dynamical processes that occur upon excitation of electrons in gallium arsenide at the attosecond timescale.
Fabian Schlaepfer and his colleagues in the experimental group of Ursula Keller at the ETH Institute for Quantum Electronics, together with Angel Rubio and Shunsuke Sato from the MPSD’s Theory department, combined transient absorption spectroscopy with sophisticated first-principles calculations to study and understand these processes. Their work has now appeared online in Nature Physics.
Gallium arsenide is a technologically important narrow-band-gap semiconductor, in which the excitation of electrons from the valence into the conduction band produces charge carriers that can transport electrical current through electronics components.
In addition to this so-called inter-band transition, carriers can also be accelerated within the individual bands as the electrons interact with the laser light. This intra-band motion is caused by the strong electric field associated with the laser light.
Which of the two mechanisms dominates the response to a short intense laser pulse, and how their interplay effects the carrier injection into the conduction band, is far from obvious.
The researchers found that intra-band motion does play an important role, as it significantly enhances the number of electrons that get excited into the conduction band. This finding was unexpected because intra-band motion alone is unable to produce charge carriers in the conduction band.
Their work has also now revealed that the nonlinear interplay between intra- and interband transitions opens a new excitation channel via virtually excited states at high pump intensities.
These results represent an important step forward in understanding the light-induced electron dynamics in a semiconductor on the attosecond timescale. The processes will be of practical relevance for future electronics and optoelectronics devices, whose dimensions become ever smaller and involve ever faster dynamics and ever stronger electric fields.
For further information please contact Jenny Witt, MPSD Press and PR
Tel.: +49 40 8998 6593
Email: jenny.witt@mpsd.mpg.de
http://Source publication: http://www.nature.com/articles/s41567-018-0069-0
(A) An intense few-cycle infrared (IR) laser pulse is combined with a single attosecond probe pulse ...
Source: Adapted from Schlaepfer et al., Nature Physics doi:10.1038/s41567-018-0069-0 (2018)
Criteria of this press release:
Journalists, Scientists and scholars, Students, all interested persons
Chemistry, Energy, Materials sciences, Physics / astronomy
transregional, national
Research results, Scientific Publications
English

(A) An intense few-cycle infrared (IR) laser pulse is combined with a single attosecond probe pulse ...
Source: Adapted from Schlaepfer et al., Nature Physics doi:10.1038/s41567-018-0069-0 (2018)
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).