idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
04/17/2018 14:02

Laserbasiertes Röntgenbild im Eiltempo

Dr. Olivia Meyer-Streng Presse und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik

    Garchinger Laserphysiker haben mit Hilfe einer laserbasierten Röntgentechnik erstmals eine Knochenprobe innerhalb weniger Minuten rekonstruiert. Dadurch rückt eine medizinische Anwendung der neuen Technologie näher.

    Einen wichtigen Schritt zur medizinischen Anwendung einer neuen laserbasierten Röntgenquelle haben Forscher der Ludwig-Maximilians-Universität (LMU), des Max-Planck-Instituts für Quantenoptik (MPQ) und der TU München (TUM) zurückgelegt. Mit Hilfe der durch einen Laser erzeugten Röntgenstrahlung ist es den Physikern gelungen, eine vollständige, dreidimensionale Rekonstruktion der Feinstruktur einer Knochenprobe, eine Tomographie, innerhalb weniger Minuten durchzuführen. Bisher dauerten vergleichbare laserbasierte Messungen mehrere Stunden. Den Durchbruch ermöglichte die Weiterentwicklung des Hochleistungslasers ATLAS im neuen Laboratory for Extreme Photonics (LEX Photonics) der LMU auf dem Forschungscampus Garching. Erleichtert hat die Messungen zudem die Rekonstruktion der Probe aus den Rohdaten mittels speziell entwickelter Computerprogramme.

    Röntgenuntersuchungen beim Arzt oder Sicherheitskontrollen am Flughafen benutzen seit über 100 Jahren Röntgenröhren um die durchleuchtende Strahlung zu erzeugen. In der Wissenschaft jedoch wird eine besondere Art von Röntgenstrahlung bevorzugt, die sogenannte Synchrotronstrahlung. Sie ist um ein Vielfaches heller und ermöglicht es, deutlich detailliertere Strukturanalysen durchzuführen. Synchrotron-Lichtquellen sind jedoch nicht sehr verbreitet. Sie beruhen auf der Beschleunigung von Teilchen mittels elektrischer Felder. Dazu ist der Bau von sehr großen und immens teuren Teilchenbeschleunigern notwendig.

    Um Patienten trotzdem die Vorteile von Synchrotronstrahlung zu bieten, erforschen die Physiker an der LMU, am MPQ und an der TUM auf Hochleistungslasern basierende Röntgenquellen. Dabei treffen extrem intensive Laserpulse auf Wasserstoffatome. Deren elektrische Felder entreißen den Atomen die Elektronen und beschleunigen sie bis fast auf Lichtgeschwindgeit. Währenddessen sorgen die starken Plasmafelder dafür, dass die Elektronen entlang ihrer Beschleunigungsstrecke oszillieren und somit Strahlung emittieren. Das alles passiert auf wenigen Millimetern Weglänge. Dementsprechend sind laserbasierte Röntgenquellen bei vergleichbarer Qualität der Strahlung um ein Vielfaches kleiner und daher deutlich günstiger als konventionelle Synchrotrons.

    In ersten Messungen am Max-Planck-Institut zeigten die Forscher 2015 bereits eine dreidimensionale Rekonstruktion eines Insekts. In den neuen Experimenten am Laboratory for Extreme Photonics verbesserten die Forscher um Prof. Stefan Karsch nun ihren experimentellen Aufbau und analysierten erstmals eine menschliche Knochenprobe. Dank fortgeschrittener Computer-Rekonstruktionsverfahren des Teams von Prof. Franz Pfeiffer von der TUM konnten die Forscher zudem mit einem deutlich kleineren Rohdatensatz arbeiten. Hierdurch konnte eine vollständige Tomographie innerhalb von drei Minuten aufgenommen werden.

    Die Arbeiten entstanden im Rahmen des Exzellenzclusters Munich-Centre for Advanced Photonics (MAP), und werden am neuen Center for Advanced Laser Applications in Garching weitergeführt. Dessen Lasersysteme sollen die Effizienz und Qualität der Röntgenquelle nochmals deutlich steigern und somit diese neue Art der Tomografie erstmals medizinisch anwendbar machen. Thorsten Naeser

    Bildbeschreibung: Die Weiterentwicklung des Hochleistungslasers ATLAS im Laboratory for Extreme Photonics der LMU ermöglichte die Erstellung einer dreidimensionalen Rekonstruktion der Feinstruktur einer Knochenprobe. (Foto: Thorsten Naeser)

    Originalveröffentlichungen:

    A.Döpp, L. Hehn, J. Götzfried, J. Wenz, M. Gilljohann, H. Ding, S. Schindler, F. Pfeiffer, and S. Karsch
    Quick X-ray microtomography using a laser-driven betatron source
    Optica Vol. 5, Issue 2, pp. 199-203 (2018) doi.org/10.1364/OPTICA.5.000199

    J.Götzfried, A.Döpp, M.Gilljohann, H.Ding, S.Schindler, J.Wenz, L.Hehn, F.Pfeiffer, S.Karsch
    Research towards high-repetition rate laser-driven X-ray sources for imaging applications
    Nuclear Instruments and Methods A (2018), doi.org/10.1016/j.nima.2018.02.110

    Kontakt:

    Dr. Andreas Döpp
    Ludwig-Maximilians-Universität München
    Lehrstuhl für Experimentalphysik-Laserphysik
    85748 Garching b. München
    Telefon: +49 (0)89 289 - 14170
    E-Mail: a.doepp@mpq.mpg.de

    Dr. Olivia Meyer-Streng
    Presse- und Öffentlichkeitsarbeit
    Max-Planck-Institut für Quantenoptik
    85748 Garching b. München
    Telefon: +49 (0)89 / 32 905 - 213
    E-Mail: olivia.meyer-streng@mpq.mpg.de


    Images

    siehe "Bildbeschreibung"
    siehe "Bildbeschreibung"
    Foto: Thorsten Naeser
    None


    Criteria of this press release:
    Journalists, all interested persons
    Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    siehe "Bildbeschreibung"


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).