idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
04/18/2018 11:23

Krebstherapie: Schaltplan der Gene zeigt die besten Angriffspunkte

Dr. Sibylle Kohlstädt Presse- und Öffentlichkeitsarbeit
Deutsches Krebsforschungszentrum

    Die meisten Gene sind Teamplayer. Nur im Zusammenspiel mit anderen Genen bringen sie die volle Leistung. Wissenschaftler aus dem Deutschen Krebsforschungszentrum haben eine Möglichkeit gefunden, dies für die Entwicklung neuer Krebstherapien auszunutzen. Sie erstellen Schaltpläne der genetischen Abhängigkeiten in Krebszellen. Auf diesen Plänen lässt sich dann ablesen, an welchen Stellen sich das Zusammenspiel der Krebsgene am wirkungsvollsten stören lässt.

    Das Erbgut von Krebszellen enthält zahlreiche Mutationen, die sich in gesunden Körperzellen nicht finden. Die veränderten Gene ermöglichen dem Krebs zu wachsen und sich auszubreiten. Da die Erkrankung auf diese Veränderungen angewiesen ist, sind die betroffenen Gene, bzw. die von ihnen abgelesenen Proteine, interessante Angriffspunkte für neue Therapien. Und da Krebszellen auf einen solchen Angriff weitaus empfindlicher reagieren als gesunde Zellen, könnten solche Therapien gezielt nur die mutierten Zellen töten, ohne den gesunden Zellen zu schaden.

    Doch in der Vergangenheit zeigte sich: „Gegen Therapien, die nur an einem einzigen Gen – bzw. nur an einem einzigen Genprodukt – ansetzen, entwickeln Krebszellen oft Resistenzen. Es gelingt ihnen häufig, den Effekt der Therapie zu umgehen und andere Wege zu finden“, berichtet Michael Boutros vom Deutschen Krebsforschungszentrum (DKFZ). „Außerdem lässt sich manchmal ausgerechnet ein für die Therapie interessantes Krebsgen nur schwer oder gar nicht angreifen“, ergänzt Boutros‘ Kollege Benedikt Rauscher. Die Lösung für diese Probleme liegt im Zusammenspiel der Gene: „Die meisten Gene wirken nicht alleine, sondern in Netzwerken mit vielen anderen Genen. Sie verstärken sich gegenseitig in ihrer Wirkung, schwächen sich ab oder neutralisieren sich ganz“, so Michael Boutros. Eine Therapie, die nicht nur ein bestimmtes Krebsgen angreift, sondern in ganze Netzwerke eingreift, können die Krebszellen nicht so leicht umgehen.

    Um die Netzwerke der Gene zu entschlüsseln und zu zeigen, welche Gene miteinander verbunden sind, hat das Team um Boutros einen neuen Computeralgorithmus entwickelt. Mit ihm können die Forscher exakte Schaltpläne der genetischen Verbindungen in menschlichen Krebszellen erstellen – und so mögliche Angriffsziele für eine Therapie aufzeigen. Das Besondere dabei: „Mit unserem Algorithmus konnten wir Daten zusammenführen, die an vielen verschiedenen Orten auf der ganzen Welt erzeugt wurden“, so Benedikt Rauscher. „Je mehr Daten wir zusammenbringen, desto genauer werden unsere Schaltpläne der genetischen Wechselwirkungen.“ Der erste Schaltplan der Heidelberger Wissenschaftler basiert auf 85 Hochdurchsatz-Screenings, die von Laboren auf der ganzen Welt in vielen verschiedenen Krebszelllinien durchgeführt wurden. Dabei kam die Genschere CRISPR/Cas9 zum Einsatz, die Erbgut gezielt schneiden und verändern kann. Mit dieser gentechnischen Methode schalteten die Wissenschaftler jedes Gen in den Krebszellen eines nach dem anderen aus und beobachteten, wie die anderen Gene darauf reagierten.

    Boutros und seine Kollegen fanden in diesem großen Datensatz bekannte Verbindungen, aber auch neue Abhängigkeiten zwischen Genen, die wichtig sind für die Entstehung von Krebs. „Außerdem stellten wir fest, dass wir mit unseren Schaltplänen auch Moleküle identifizieren können, die eine wichtige Rolle bei bestimmten Krebsarten spielen“, berichtet Boutros. In der aktuellen Untersuchung entdeckten die Wissenschaftler, dass die beiden Gene GANAB und PRKCSH die Ausschüttung von sogenannten Wnt-Signalen kontrollieren. Diese Signale können benachbarte Krebszellen zum Wachstum anregen – ein Prozess, der vor allem bei Bauchspeicheldrüsen- und Darmkrebs eine wichtige Rolle spielt.

    Benedikt Rauscher, Florian Heigwer, Luisa Henkel, Thomas Hielscher, Oksana Voloshanenko und Michael Boutros. Toward an integrated map of genetic interactions in cancer cells.
    Mol Syst Biol 2018; DOI: 10.15252/msb.20177656

    Das Deutsche Krebsforschungszentrum (DKFZ) ist mit mehr als 3.000 Mitarbeiterinnen und Mitarbeitern die größte biomedizinische Forschungseinrichtung in Deutschland. Über 1000 Wissenschaftlerinnen und Wissenschaftler erforschen im DKFZ, wie Krebs entsteht, erfassen Krebsrisikofaktoren und suchen nach neuen Strategien, die verhindern, dass Menschen an Krebs erkranken. Sie entwickeln neue Methoden, mit denen Tumoren präziser diagnostiziert und Krebspatienten erfolgreicher behandelt werden können. Die Mitarbeiterinnen und Mitarbeiter des Krebsinformationsdienstes (KID) klären Betroffene, interessierte Bürger und Fachkreise über die Volkskrankheit Krebs auf. Gemeinsam mit dem Universitätsklinikum Heidelberg hat das DKFZ das Nationale Centrum für Tumorerkrankungen (NCT) Heidelberg eingerichtet, in dem vielversprechende Ansätze aus der Krebsforschung in die Klinik übertragen werden. Im Deutschen Konsortium für Translationale Krebsforschung (DKTK), einem der sechs Deutschen Zentren für Gesundheitsforschung, unterhält das DKFZ Translationszentren an sieben universitären Partnerstandorten. Die Verbindung von exzellenter Hochschulmedizin mit der hochkarätigen Forschung eines Helmholtz-Zentrums ist ein wichtiger Beitrag, um die Chancen von Krebspatienten zu verbessern. Das DKFZ wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert und ist Mitglied in der Helmholtz-Gemeinschaft Deutscher Forschungszentren.

    Ansprechpartner für die Presse:

    Dr. Sibylle Kohlstädt
    Presse- und Öffentlichkeitsarbeit
    Deutsches Krebsforschungszentrum
    Im Neuenheimer Feld 280
    69120 Heidelberg
    T: +49 6221 42 2843
    F: +49 6221 42 2968
    E-Mail: S.Kohlstaedt@dkfz.de
    E-Mail: presse@dkfz.de
    www.dkfz.de


    Images

    Criteria of this press release:
    Journalists
    Biology, Medicine
    transregional, national
    Research results, Scientific Publications
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).