idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
06/20/2018 09:11

Temperature-controlled fiber-optic light source with liquid core

Dr. Anja Schulz Presse- und Öffentlichkeitsarbeit
Leibniz-Institut für Photonische Technologien e. V.

    In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

    Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting from the unique characteristics of the carbondisulfide-filled fiber core. Now they succeeded to control light generation and the propagation of the wave packages via temperature and pressure tuning along the optical fiber. In this way, they realised near and mid-infrared supercontinuum light sources with flexibly adjustable spectral band width for applications in medical imaging, measurement technology, and spectroscopy.

    “Our computer simulations and experiments showed that the wavelength of the initial solitons remains constant over the whole temperature range. The dispersive wave packages resulting from soliton fission, indeed exhibit spectral shifts depending on the ambient temperature. A temperature change of only 13 Kelvin allows us to adjust the band width of radiation over several hundred nanometers“, explains Mario Chemnitz, scientist at Leibniz-IPHT and first author of the publication.

    The original article “Thermodynamic control of soliton dynamics in liquid-core fibers“ by Mario Chemnitz, Ramona Scheibinger, Christian Gaida, Martin Gebhardt, Fabian Stutzki, Sebastian Pumpe, Jens Kobelke, Jens Limpert, Andreas Tünnermann and Markus A. Schmidt was published 29th May 2018 in Optica. The research work was funded by the German Research Foundation and the Freestate of Thuringia.


    More information:

    https://www.leibniz-ipht.de/en/institute/presse/news/detail/temperaturgesteuerte...
    https://www.osapublishing.org/optica/abstract.cfm?uri=optica-5-6-695


    Images

    Schematic representation of the temperature-controlled supercontinuum generation.
    Schematic representation of the temperature-controlled supercontinuum generation.
    Source: Leibniz-IPHT
    None


    Criteria of this press release:
    Journalists, Scientists and scholars
    Chemistry, Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    English


     

    Schematic representation of the temperature-controlled supercontinuum generation.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).