idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
06/28/2018 13:43

Synthesis of opium alkaloids using electric current

Petra Giegerich Kommunikation und Presse
Johannes Gutenberg-Universität Mainz

    A selective electrochemical reaction enables the synthesis of thebaine and offers a solution to a long-standing synthetic challenge

    Researchers at Johannes Gutenberg University Mainz (JGU) have mastered a nearly 50-year-old challenge of electrosynthetic chemistry, namely the electrochemical synthesis of thebaine. The chemists had set themselves this difficult task within the framework of a collaboration with the University of Münster.

    Thebaine is a component of the latex of the opium poppy and is named after the old designation of Luxor, i.e., the Ancient Egyptian city of Thebes. This opium alkaloid is the biosynthetic precursor of codeine and morphine and serves as the starting material for the industrial production of important pharmaceuticals, such as oxycodone or naloxone. The key step in the biosynthesis of thebaine, codeine, and morphine involves a reaction known as oxidative coupling. For decades, researchers have been trying to mimic this transformation in the laboratory. However, this oxidative coupling represents a considerable challenge because it can result in the formation of four different products, only one of which can be further converted into thebaine. Hence, in order to efficiently mimic this naturally occurring process, a highly selective reaction is mandatory.

    For decades, chemists have attempted to accomplish a biomimetic synthesis of thebaine using conventional oxidants. However, large quantities of these often toxic reagents were required and undesired coupling products were obtained in most cases. Electrochemistry is a technique that involves the transfer of electrons to or from molecules on the surface of electrodes immersed in a solution. Using this method, it is possible to perform reagent-free oxidations. In fact, these environmentally benign processes only require electric current and avoid the production of chemical waste. So far, electrochemistry did not provide coupling products which could be transformed into thebaine, and its electrochemical synthesis remained a challenging task.

    Alexander Lipp and Professor Till Opatz from the Institute of Organic Chemistry at JGU have now solved this long-standing problem. Their approach involved astute modification of the starting materials used in the oxidative coupling. With this, they have also paved the way for the future electrochemical synthesis of further opium alkaloids. Other participants involved in the project were Professor Siegfried R. Waldvogel, also from the Institute of Organic Chemistry at Mainz University, and Professor Hans J. Schäfer from the University of Münster. The project was undertaken under the aegis of the Advanced Lab for Electrochemistry and Electroorganic Synthesis (ELYSION), financed by the Carl Zeiss Foundation.

    Image:
    http://www.uni-mainz.de/bilder_presse/09_orgchemie_opium_alkaloide.jpg
    The Mainz-based chemists investigated the oxidative key step in the biosynthesis of thebaine, codeine, and morphine using a simple and self-made electrochemical cell.
    photo/©: Alexander Lipp

    Publication:
    A. Lipp et al., A Regio‐ and Diastereoselective Anodic Aryl–Aryl Coupling in the Biomimetic Total Synthesis of (−)‐Thebaine, Angewandte Chemie International Edition, 22 May 2018,
    DOI:10.1002/anie.201803887
    https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201803887

    Contact:
    Professor Dr. Till Opatz
    Institute of Organic Chemistry
    Johannes Gutenberg University Mainz
    55099 Mainz, GERMANY
    phone +49 6131 39-22272 or 39-24443
    fax +49 6131 39-22338
    e-mail: opatz@uni-mainz.de
    https://ak-opatz.chemie.uni-mainz.de/prof-dr-till-opatz/ [in German]

    Related links:
    https://doi.org/10.1002/anie.201806821 (Cover in Angewandte Chemie Int. Ed.)

    Read more:
    http://www.uni-mainz.de/presse/aktuell/5480_ENG_HTML.php – press release "Antidiabetic action of natural fatty acid derivatives not confirmed" (25 June 2018)
    http://www.uni-mainz.de/presse/19700_ENG_HTML.php – press release "Wood instead of petroleum: New approach to producing chemical substances solely from renewable resources" (26 Oct. 2015)
    http://www.uni-mainz.de/presse/19525_ENG_HTML.php – press release "Carl Zeiss Foundation donates EUR 850,000 to the Advanced Lab for Electrochemistry and Electroorganic Synthesis at Mainz University" (12 Aug. 2015)


    Images

    Criteria of this press release:
    Journalists, Scientists and scholars, all interested persons
    Chemistry, Medicine
    transregional, national
    Research results, Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).