idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
07/16/2018 11:48

Mister Raney bekommt Konkurrenz - Ein neuer Katalysator auf Nickel-Basis nutzt Nano-Strukturen

Dr. Barbara Heller Pressestelle
Leibniz-Institut für Katalyse e. V. an der Universität Rostock

    Chemiker am Leibniz-Institut für Katalyse (LIKAT Rostock), entwickelten einen Katalysator auf der Basis von nickelhaltigen Nano-Strukturen, mit dem sich Verfahren in der Grundstoff- und Synthesechemie stark vereinfachen lassen. Der neue Katalysator vermag Doppelbindungen zwischen Kohlenstoff-Atomen, z.B. in ungesättigten Fettsäuren, effektiv in Einfachbindungen umzuwandeln und gleichzeitig Molekülgruppen mit sensiblen Funktionen zu schonen. Damit ist er dem „Evergreen“-Standard in diesem Bereich hoch überlegen, einem Katalysator namens Raney-Nickel, der seit knapp hundert Jahren verwendet wird. SCIENCE ADVANCES hat das Paper dazu veröffentlicht.

    Raney-Nickel, ein dunkles Pulver, war 1925 von dem US-amerikanischen Ingenieur Murray Raney (1885–1966) für das Härten von Pflanzenölen entwickelt worden. Nickel fungiert in diesem Katalysator als aktives Metall, das den Ausgangsstoff zur chemischen Reaktion mit Wasserstoff anregt. Noch heute wird der Allrounder Raney-Nickel in modernen Synthesen komplexer organischer Moleküle, wie Naturstoffen, als Standard-Katalysator genutzt.

    Nachteil: leicht entflammbar

    Doch dieses Arbeitspferd der Katalyse hat einen entscheiden Nachteil. „Raney-Nickel beginnt bei Kontakt mit Sauerstoff sofort zu brennen“, erläutert Pavel Ryabchuk, Mitautor des Artikels bei SCIENCE ADVANCES. Der Katalysator muss also konsequent vor Luft geschützt werden und ist deshalb umständlich zu handhaben.
    Und es gibt noch einen zweiten Nachteil. Raney-Nickel attackiert auch funktionelle Gruppen. Das mögen Chemiker nicht. Ryabchuk: „So gehen gerade in komplexen Molekülen, wie sie z.B. für Medikamente benötigt werden, wichtige Eigenschaften verloren.“

    Expertise für Nano-Partikel

    Für die Wissenschaftler um Matthias Beller, Direktor des LIKAT, war das Grund genug nach Alternativen zu fahnden. Als Pavel Ryabchuk, der an der Lomonossow-Universität studiert und an der University of Kansas promoviert hatte, als Postdoktorand in den Bereich von Matthias Beller kam, profitierte er u.a. von den Arbeiten der Forschergruppe um Kathrin Junge. Zur Expertise dieser Gruppe zählt die Entwicklung von Nano-Katalysatoren. Das heißt, die Gruppe beherrscht in ihren Laboren Strukturen von Millionstel Millimetern, was von der Größenordnung im Bereich einzelner Moleküle liegt.
    Das Team von Kathrin Junge, ebenfalls Mitautorin des SCIENCE-ADVANCES-Artikels, hat Nano-Katalysatoren bisher auf Basis von Kobalt und Eisen entwickelt. Nun lag es als Ersatz für Raney-Nickel nahe zu schauen, inwieweit Nickel für Nano-Strukturen taugt. Die Experimente verliefen positiv. Und als Trägermaterial für das Nickel erwies sich Siliziumoxid, d.h. Quarzsand, als besonders geeignet.

    Prozedur bei Tausend Grad Celsius

    So entstehen die Nano-Partikel: Die Wissenschaftler mischen einen Molekülkomplex, der Nickel enthält, zusammen mit Quarzsand in technischem Alkohol. Anschließend wird das Ganze auf Temperaturen bis tausend Grad Celsius erhitzt. Bei dieser Prozedur entsteht elementares Silizium, das mit Nickel reagiert und zusammen mit ihm Nanopartikel bildet.
    Die Substanz nennt sich Nickel-Silizid und ist wie Raney-Nickel ein dunkles Pulver. Doch anders als dieser Katalyse-Veteran arbeitet Nickel-Silizid äußerst selektiv. Der neue Nickel-Katalysator sorgt dafür, dass die C=C-Doppelbindungen wie geplant hydriert werden, wobei die funktionell wichtige Molekülgruppen verschont bleiben. Außerdem entflammt er unter Laborbedingungen nicht, ist also viel einfacher zu handhaben als sein traditioneller Vorgänger.

    Ausbeute steigt

    Die Größe der Nanopartikel schwankt zwischen 20 und 70 Nanometer, abhängig von der Temperatur am Ende des Herstellungsprozesses. Pavel Ryabchuk testete die Aktivität des neuen Katalysators an hunderten Substanzen: „Er war immer aktiv.“ Und im Vergleich mit Raney-Nickel lag die Ausbeute stets höher.
    Als Grundlagenforscher wüssten Matthias Beller, Kathrin Junge und Pavel Ryabchuk natürlich gern, was den Ausschlag für die exzellente Aktivität ihres neuen Katalysators gibt: „Warum ist der so gut?“ Liegt es an der Größe der Nanopartikel? Spielt womöglich nicht nur Nickel, sondern auch das Silizium eine Rolle?
    Kathrin Junge ist sich sicher: „Weltweit werden Teams unsere Ergebnisse in ihren Labors nachvollziehen, neue Erkenntnisse gewinnen und zusammen werden wir einer Antwort näherkommen.“ Und für ihren jungen russischen Kollegen, sagt sie, sei diese Publikation in SCIENCE ADVANCES, Online-Ableger des renommierten Magazins SCIENCE, die beste Empfehlung für die weitere Karriere.


    Contact for scientific information:

    Prof. Dr. Matthias Beller, Matthias.beller@catalysis.de
    Dr. Kathrin Junge, kathrin.junge@catalysis.de


    Original publication:

    DOI: 10.1126/sciadv.aat0761


    Images

    Criteria of this press release:
    Journalists
    Chemistry
    transregional, national
    Research results
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).