idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
08/05/2018 14:55

Akustische Oberflächenwellen geben in neuronalem Netz den Ton an

Klaus P. Prem Presse - Öffentlichkeitsarbeit - Information
Universität Augsburg

    Biophysiker aus Augsburg und Santa Barbara berichten in "Physical Review E" über das erstmalige Gelingen einer gezielten dynamischen Positionierung von Nervenzellen auf einem Chip. Die vielfach bereits bewährte Augsburger Surface Acoustic Waves-Technologie eröffnet damit jetzt auch neue Wege zum Verständnis und zur Beeinflussung neuronaler Netze.

    Der Nachwuchs-Forschungsgruppe um den Biophysiker Dr. Christoph Westerhausen am Lehrstuhl für Experimentalphysik I der Universität Augsburg ist es in Kooperation mit Kollegen von der University of California in Santa Barbara erstmals gelungen, mit Surface Acoustic Waves (SAWs) – das sind durch Hochfrequenzsignale induzierte Schallwellen, die sich an der Oberfläche eines Chips ausbreiten - lebende neuronale Zellen auf einem Bio-Chip gezielt in periodischen Abständen zu positionieren und darüber hinaus sogar das Wachstum der neuronalen Zellfortsätze zu beeinflussen. "Dies ist ein wichtiger Schritt Richtung sogenannter Brain-On-A-Chip Systeme und könnte elementar zum Verständnis der Prozesse im menschlichen Hirn beitragen", sagt Lehrstuhlinhaber Prof. Dr. Achim Wixforth.

    Wixforth und die Biophysik-Gruppe seines Lehrstuhlteams haben weltweit einen Ruf als führende Spezialisten für die Wechselwirkung zwischen Zellen und sogenannten akustischen Oberflächenwellen auf einem Chip. Das Prinzip der von Wixforth entwickelten SAW-Technologie: Als Folge eines "Nanoerdbebens", das durch die Anlegung eines passenden Hochfrequenzsignals an die auf dem Chip angebrachten Elektroden verursacht wird, breiten sich diese Schallwellen kontrollierbar an der Kristalloberfläche des Chips aus.

    Kontrollierte Zellpositionierung: dynamisch einstellbar

    Im angesehenen Magazin "Physical Review E" belegen Westerhausen und sein Augsburger Kollege Manuel Brugger jetzt, dass es ihnen gemeinsam mit ihren Partnern in Santa Barbara gelungen ist, auf der Grundlage dieser nanotechnologischen Methode einen neuartigen, weil dynamisch einstellbaren Ansatz zur kontrollierten und gezielten Zellpositionierung inklusive anschließender Anhaftung und Kultur der Zellen auf einem Mikrofluidik-Chip zu entwickeln. Durch akustisches Einfangen kleiner Polymerkügelchen und durch deren Positionierung in variablen Abständen demonstrieren die Nanophysiker die volle Breite der Adjustierungsmöglichkeiten, die dieser neue Ansatz bietet. Die Augsburger Forscher und Ihre Kollegen aus Santa Barbara können weiterhin die Langzeitbiokompatibilität von Behandlungen nachweisen, die auf dem Wachstum diverser auf dem Chip gezielt beeinflusster Zellarten – etwa Knochenkrebszellen, Nierenzellen oder Neuronen – basieren.

    Ausrichtung der Zell-Zell-Verbindungen und Schallwellenfeld: überzeugende Korrelation

    "Das i-Tüpfelchen und wohl wichtigste Resultat unserer Arbeit ist die erfolgreiche Stimulation sehr empfindlicher, primärer neuronaler Zellen und der Auswüchse, die diese Zellen verbinden. Die Ausrichtung dieser Zell-Zell-Verbindungen stimmt in überzeugender Weise mit dem jeweils angelegten Schallwellenfeld und der daraus resultierenden Potentiallandschaft überein und erlaubt es, hier von der ersten Form eines mittels Schallwellen auf einem Chip generierten kleinsten neuronalen Netzwerks zu sprechen", so Westerhausen.

    Erforschung neuronaler Netzwerke: neue erfolgversprechende Perspektiven

    Die Möglichkeiten, mit statischen Ansätzen – z. B. durch entsprechende Strukturierungen der Chipoberfläche – neuronale Netze herzustellen bzw. zu beeinflussen, haben sich als begrenzt erwiesen. "Mit unserer dynamischen Methode", erläutert Brugger, "können wir diese Limitierung überwinden, um so der biophysikalischen Grundlagenforschung – etwa zur Korrelation von Struktur, Signalausbreitung und Funktion neuronaler Netzwerke – längerfristig neue und weitreichende Perspektiven bieten."

    Medizinische Anwendungen: durchaus denkbar

    Medizintechnische Anwendungen – etwa durch gezielte Zellwachstumsbeeinflussungen bei Rückenmarksverletzungen – seien zwar noch Zukunftsmusik, aber durchaus denkbar. Westerhausen: "Was den Ausbau unserer neuen Methode und vor allem deren potentielle Anwendungen betrifft, sprudeln wir vor Ideen. Mit dem Nachweis, dass mit unserer 'Nanobeben'- bzw. Surface Acoustic Waves-Technologie die gezielte und präzise Anordnung empfindlicher Neuronen machbar ist und dass mit ihr auch die Verknüpfungen der Neuronen gezielt beeinflusst werden können, haben wir jedenfalls einen wichtigen Grundstein für die weitere aussichtsreiche Grundlagenforschung und neue Anwendungsperspektiven auf diesem Gebiet gelegt."
    _____________________________

    Die Erarbeitung dieser Forschungsergebnisse wurde u. a. von der "Nanosystems Initiative Munich/NIM" (Exzellenzinitiative des Bundes – http://www.nano-initiative-munich.de) sowie durch das Bayerisch-Kalifornische Hochschulzentrum im Rahmen der Förderinitiative BaCaTec (http://www.bacatec.de) unterstützt.
    _____________________________


    Contact for scientific information:

    Dr. Christoph Westerhausen
    Lehrstuhl für Experimentalphysik I
    Universität Augsburg
    Universitätsstraße 1
    86159 Augsburg
    christoph.westerhausen@physik.uni-augsburg.de
    http://www.physik.uni-augsburg.de/exp1/mitarbeiter/02_seniors/westerhausen_chris...


    Original publication:

    Orchestrating cells on a chip: Employing surface acoustic waves towards the formation of neural networks. Manuel S. Brugger, Sarah Grundeen, Adele Doyle, Luke Theogarajan, Achim Wixforth, and Christoph Westerhausen. Phys. Rev. E 98, 012411 – Published 18 July 2018. http://link.aps.org/doi/10.1103/PhysRevE.98.012411


    Images

    Neuronale Zellen auf einem Bio-Chip: Das angelegte Schallwellenfeld beeinflusst sowohl die Positionierung der Zellen als auch die Auswüchse der neuronalen Fortsätze, die diese Zellen verknüpfen.
    Neuronale Zellen auf einem Bio-Chip: Das angelegte Schallwellenfeld beeinflusst sowohl die Positioni ...
    © Christoph Hohmann, NIM
    None


    Criteria of this press release:
    Journalists, Scientists and scholars, all interested persons
    Biology, Chemistry, Materials sciences, Physics / astronomy
    transregional, national
    Research results
    German


     

    Neuronale Zellen auf einem Bio-Chip: Das angelegte Schallwellenfeld beeinflusst sowohl die Positionierung der Zellen als auch die Auswüchse der neuronalen Fortsätze, die diese Zellen verknüpfen.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).