idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
10/18/2018 14:58

How plants bind their green pigment chlorophyll

Petra Giegerich Kommunikation und Presse
Johannes Gutenberg-Universität Mainz

    Water-soluble protein helps to understand the photosynthetic apparatus

    Whenever you see green color out in nature, you are likely to look at chlorophyll. This is the pigment used by all plants to do photosynthesis. There are two versions, chlorophyll a and chlorophyll b. These are structurally very similar to one another but have different colors, blue-green and yellowish green, respectively. Both pigments fulfill different jobs during photosynthesis and therefore are bound very selectively by the proteins of the photosynthesis apparatus in plants. How these plant proteins recognize the two chlorophylls, despite their small structural differences, and thus are able to bind them selectively, has been largely unknown so far.

    Researchers of Johannes Gutenberg University Mainz (JGU), together with two Japanese colleagues, have partially solved this riddle. The team of Professor Harald Paulsen at the JGU Faculty of Biology used the so-called Water-soluble Chlorophyll Protein of cauliflower and Virginia pepperweed as a model protein. This protein possesses only a single chlorophyll binding site per protein molecule and is able to bind both chlorophyll versions. Upon variation of the amino acids near the chlorophyll binding site, the preference of the protein for one chlorophyll or the other changed. In one case, exchanging a single amino acid altered the relative binding strengths by a factor of 40. "This does not explain everything about Chl a/b binding specificity in the photosynthetic apparatus," said Paulsen, "but our results yield useful hypotheses that now can be tested with photosynthesis proteins. In the longer run, this may help to improve light harvesting in new photovoltaic devices or in artificial photosynthesis."

    One of the lead authors of this publication in Nature Plants is Dr. Alessandro Agostini. He received his doctorate for his thesis on Water-soluble Chlorophyll Protein jointly from Mainz University (Paulsen group) and the University of Padova in Italy (group of Professor Donatella Carbonera). "This is a nice example of a successful international collaboration," added Paulsen, "not only in terms of research but also by jointly advising a graduate student." This work was funded by the German Research Foundation.

    Image caption:
    http://www.uni-mainz.de/bilder_presse/10_imp_pflanzenbiochemie_chlorophyll.jpg
    Water-soluble Chlorophyll Protein tetramer binding four chlorophylls (in green)
    Ill./©: Alessandro Agostini, JGU


    Contact for scientific information:

    Professor Dr. Harald Paulsen
    Institute of Molecular Physiology (IMP)
    Faculty of Biology
    Johannes Gutenberg University Mainz
    55099 Mainz, GERMANY
    phone +49 6131 39-24633
    e-mail: paulsen@uni-mainz.de
    https://www.blogs.uni-mainz.de/fb10-plant-biochemistry/research-groups/the-pauls...


    Original publication:

    D. M. Palm et al., Chlorophyll a/b binding-specificity in Water-Soluble Chlorophyll Protein
    Nature Plants, 8 October 2018
    DOI: 10.1038/s41477-018-0273-z
    https://www.nature.com/articles/s41477-018-0273-z


    More information:

    http://www.bio.uni-mainz.de/index_ENG.php – Faculty of Biology at Johannes Gutenberg University Mainz


    Images

    Criteria of this press release:
    Journalists, Scientists and scholars
    Biology, Energy, Environment / ecology
    transregional, national
    Research results, Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).