idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
11/13/2018 10:23

Ein Chip mit echten Blutgefäßen

Dr. Florian Aigner Büro für Öffentlichkeitsarbeit
Technische Universität Wien

    An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

    Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen Blutgefäßen, ist allerdings eine viel schwierigere Aufgabe. Biologisch wichtige Transportprozesse, etwa von Sauerstoff, Zucker und anderen Substanzen ins Gewebe, hat man bis heute noch nicht zur Gänze verstanden. Das soll sich nun mit einer ganz neuen Herangehensweise an das Problem ändern: An der TU Wien baut man Mini-Gewebe am Biochip nach – so genannte „Organs-on-a-Chip“. So kann man komplizierte biologische Prozesse präzise steuern, kontrollieren und messen - viel besser als es in Tierversuchen oder direkt am Menschen möglich wäre.

    Besser als Tierversuche

    „Rund um eine frische Wunde muss neues Gewebe nachwachsen, in dem sich unter anderem auch neue Blutgefäße bilden“, erklärt Dipl-Ing. Barbara Bachmann vom Institut für Angewandte Synthesechemie der TU Wien. „Wir machen uns diese natürlichen, körpereigenen Wundheilungsprozesse zu Nutze, um Blutgefäße im Labor in ganz kleinen Biochips zu züchten.“

    Lange Zeit war man bei solchen Forschungsansätzen ausschließlich auf Tierversuche angewiesen. „Tierversuche haben viele Nachteile – nicht nur auf ethischer, sondern auch auf wissenschaftlicher Ebene“, sagt der Arbeitsgruppenleiter Prof. Peter Ertl. „Ihre Resultate sind nie hundertprozentig auf den Menschen übertragbar, und so kommt es bei klinischen Studien immer wieder zu überraschenden Nebenwirkungen, die sich im Tiermodell nicht gezeigt hatten.“

    Nun kann man mit Biochip-Technologie hochpräzise regulieren, mit welchen Substanzen die menschlichen Gefäßzellen versorgt werden. Dadurch ist es möglich, menschliche Zellen über mehrere Wochen hinweg zu kultivieren und zu untersuchen. „Wir verwenden neben Endothelzellen, die Gefäßinnenseiten auskleiden, auch Stammzellen, die maßgeblich zur Gefäßstabilisierung beitragen.“, sagt Dr. Mario Rothbauer. „Innerhalb von Tagen beginnt sich wie von Zauberhand im Biochip ein Netzwerk winziger Blutgefäße auszubilden.“

    Direkt neben diesem neuentstandenen Geflecht an feinen Blutkapillaren führt die Leitung vorbei, durch die das Gewebe von außen mit Sauerstoff und Nährstoffen versorgt wird – die „künstliche Arterie“ des Biochips. Die feinen, natürlich gewachsenen Blutgefäße sind nicht direkt mit dieser künstlichen Leitung verbunden, aber die Grenzen zwischen den beiden Bereichen sind nicht dicht, daher findet ein permanenter Stoffaustausch statt.

    „Das ist eine Situation, die in der Medizin eine wichtige Rolle spielt“, sagt Prof. Peter Ertl: „Einerseits bei der Wundheilung, andererseits aber auch bei Krankheitsbildern wie Krebs.“ Ein schnell wachsender Tumor muss es schaffen, mit ausreichenden Mengen an Nährstoffen versorgt zu werden – darum sorgt er für unnatürlich schnelles Wachstum feiner Blutkapillaren. Wie der Stoffaustausch genau abläuft, kann nun viel besser als bisher möglich im Chip untersucht werden. „Wir konnten zeigen, dass dort Stoffaustausch und Versorgung im Gewebe tatsächlich vom Abstand zur Zufluss-Leitung abhängen, wie das auch in einem natürlichen Gewebe der Fall wäre“, sagt Dipl.-Ing. Sarah Spitz. „Und ganz entscheidend ist: Wir konnten nachweisen, dass sich die Stoffzufuhr ins Gewebe fein regulieren lässt indem wir die Flussgeschwindigkeit in den Biochips verändern – so einfach ist das.“

    Interdisziplinäre Forschung

    In diesem Forschungsbereich greifen mehrere wissenschaftliche Disziplinen eng ineinander – Medizin und Chemie, aber auch Mikrofluidik – die Wissenschaft vom Strömungsverhalten winziger Stoffmengen, oder auch Materialwissenschaft und Fertigungstechnik – um die präzise Herstellung der Chips überhaupt erst zu ermöglichen. Die TU Wien arbeitete dabei mit dem Ludwig Boltzmann Institut für Experimentelle und Klinische Traumatologie zusammen, unterstützt durch das „Interreg“-Förderprogramm der Europäischen Union.

    „Nur durch diese interdisziplinäre Vielfalt können wir uns einen Vorsprung herausarbeiten und Forschungsergebnisse erzielen, die international für Aufsehen sorgen“, sagt Peter Ertl. „Unsere Ergebnisse zeigen, dass die Bio-Chips ein ausgezeichnetes Modell bieten, um die Sauerstoffzufuhr in neu gebildeten Geweben zu studieren. Das ist für uns erst der Beginn. Die Forschungsfragen, die sich dadurch nun auftun, lassen sich noch gar nicht überblicken.“


    Contact for scientific information:

    Prof. Peter Ertl
    Institut für Angewandte Synthesechemie
    Technische Universität Wien
    Getreidemarkt 9, 1060 Wien
    T: +43-1-58801-163605
    peter.ertl@tuwien.ac.at

    Dipl.-Ing. Barbara Bachmann (barbara.bachmann@tuwien.ac.at)
    Dr. Mario Rothbauer (mario.rothbauer@tuwien.ac.at)
    Sarah Spitz (sarah.spitz@tuwien.ac.at)
    Institut für Angewandte Synthesechemie
    Technische Universität Wien
    Getreidemarkt 9, 1060 Wien
    T: +43-1-58801-163724


    Original publication:

    Engineering of three-dimensional pre-vascular networks within fibrin hydrogel constructs by microfluidic control over reciprocal cell signaling, https://aip.scitation.org/doi/10.1063/1.5027054


    Images

    Das Team der CellChipGroup, das sich mit Gewebezüchtung am Chip befasst: DI Barbara Bchmann, Prof. Peter Ertl und Dr. Mario Rothbauer (v.l.n.r.)
    Das Team der CellChipGroup, das sich mit Gewebezüchtung am Chip befasst: DI Barbara Bchmann, Prof. P ...
    TU Wien
    None

    Der Biochip: Kleines Design mit großer Wirkung. In jeder der vier Kammern können unterschiedliche Wachstumsbedingungen, die großen Einfluss auf die Anzucht künstlicher Gefäße haben, erzeugt werden.
    Der Biochip: Kleines Design mit großer Wirkung. In jeder der vier Kammern können unterschiedliche Wa ...
    TU Wien
    None


    Criteria of this press release:
    Journalists, all interested persons
    Biology, Chemistry, Medicine
    transregional, national
    Research results
    German


     

    Das Team der CellChipGroup, das sich mit Gewebezüchtung am Chip befasst: DI Barbara Bchmann, Prof. Peter Ertl und Dr. Mario Rothbauer (v.l.n.r.)


    For download

    x

    Der Biochip: Kleines Design mit großer Wirkung. In jeder der vier Kammern können unterschiedliche Wachstumsbedingungen, die großen Einfluss auf die Anzucht künstlicher Gefäße haben, erzeugt werden.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).