idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
11/14/2018 08:38

Die Umgebung macht das Molekül zum Schalter

Gunnar Bartsch Presse- und Öffentlichkeitsarbeit
Julius-Maximilians-Universität Würzburg

    Erstmals haben Physiker der Universität Würzburg ein organisches Molekül so positioniert, dass dieses zwei unterschiedliche Zustände annehmen kann. Damit eignet es sich möglicherweise zum Einsatz in der molekularen Spintronik.

    Es sieht aus wie ein Kreuz mit vier exakt gleich langen Armen, in deren Schnittpunkt in der Mitte ein zentrales Atom sitzt. Sämtliche Bausteine sind in einer Ebene angeordnet, sodass das Molekül absolut plan ist – zumindest im Normalzustand. Jetzt ist es Physikern der Universität Würzburg gelungen, dieses Molekül mithilfe einer speziellen Auflage und eines elektrischen Felds so zu manipulieren, dass es zwei unterschiedliche Zustände dauerhaft annehmen kann. Damit könnte es sich als eine Art „molekularer Schalter“ für die Spintronik anbieten – einer zukunftsträchtigen Form der Datenverarbeitung, die auf dem Spin von Elektronen basiert.

    Der Molekülschalter ist das Produkt einer Zusammenarbeit von Vertretern der experimentellen und der theoretischen Physik an der Julius-Maximilians-Universität (JMU): Dr. Jens Kügel, Postdoc am Lehrstuhl für Experimentelle Physik II, konzipierte und führte die Experimente durch. Giorgio Sangiovanni, Professor für Theoretische Physik am Institut für Theoretische Physik und Astrophysik, kümmerte sich um deren Interpretation. Ihre Forschungsergebnisse hat das Team jetzt in der aktuellen Ausgabe der Fachzeitschrift npj Quantum Materials veröffentlicht.

    Brückenbau mit einem Farbstoffmolekül

    „Wir haben mit einem Mangan-Phthalocyanin-Molekül gearbeitet, einem Farbstoff, der normalerweise nicht schaltbar ist“, beschreibt Sangiovanni die Vorgehensweise der Physiker. Um daraus dennoch einen molekularen Schalter zu konstruieren, musste Jens Kügel einen Trick anwenden. Dazu brachte er das Molekül auf einer sehr speziellen metallischen Oberfläche auf, die aus Silber- und Bismutatomen aufgebaut war.

    Weil Bismutatome deutlich größer sind als Silberatome, ziehen sie sich dank ihrer regelmäßigen Anordnung wie niedrige Mauern über die Metalloberfläche. Unregelmäßigkeiten in dieser Struktur führen zu einem größeren Abstand zwischen zwei Bismutbereichen, die man sich als ein ausgetrocknetes Flussbett vorstellen kann. Das Mangan-Phthalocyanin-Molekül bildet dann – um im Bild zu bleiben – eine Brücke über dieses Flussbett.

    Schaltung per elektrischem Feld

    Seine Schaltbarkeit erhält das Molekül durch einen technischen Eingriff von Jens Kügel. Näherte er sich mit einer extrem feinen Spitze, von der ein elektrisches Feld ausging, dem Manganatom im Zentrum des Moleküls, veränderte dies seine Lage – konkret wanderte es ein stückweit nach unten in Richtung der metallischen Oberfläche – und verharrte dort außerhalb der Molekülebene dauerhaft. „Auf diese Weise nahm das Molekül zwei stabile Zustände ein, zwischen denen wir hin- und herschalten konnten“, sagt der Physiker.

    Physikalisch gesehen bildet das Molekül durch die Lageveränderung seines zentralen Atoms ein großes magnetisches Moment aus. Aufgrund spezieller quantenphysikalischer Phänomene wirkt sich diese Lageveränderung auf das gesamte Molekül aus, was sich nach außen durch stark unterschiedliche magnetische Eigenschaften bemerkbar macht. In der Fachsprache der Physik wird dies als Kondo-Effekt bezeichnet.

    Ein neues Konzept zum Bau molekularer Schalter

    Normalerweise werden molekulare Schalter so synthetisiert, dass sie von sich aus in mehreren Zuständen stabil sind. „Wir haben jetzt gezeigt, dass man auch in nichtschaltbaren Molekülen diese Funktionalität erzeugen kann, indem man die Umgebung des Moleküls gezielt verändert“, schilderten Kügel und Sangiovanni das zentrale Ergebnis der jetzt veröffentlichten Arbeit. Die Physiker haben damit ein neues Konzept entwickelt, molekulare Schalter zu bauen. Dies eröffnet aus ihrer Sicht in Zukunft neue Möglichkeiten im Design molekularer Elektronik.

    Erfolgreiche Kooperation im Sonderforschungsbereich

    Die erfolgreiche Zusammenarbeit von theoretischen und experimentellen Physikern an der Universität Würzburg basiert auch auf dem hier angesiedelten Sonderforschungsbereich „Topologische und korrelierte Elektronik in Ober- und Grenzflächen“ – kurz: ToCoTronics. In dessen Fokus stehen spezielle physikalische Phänomene – elektronische Korrelationen und topologische Physik und vor allem ihr Wechselspiel, die großes Anwendungspotential für neuartige und zukunftsweisende Technologien besitzen.


    Contact for scientific information:

    Prof. Dr. Giorgio Sangiovanni, T: +49 931 31-89100, sangiovanni@physik.uni-wuerzburg.de
    Dr. Jens Kügel, T: +49 931 31-85085, jens.kuegel@physik.uni-wuerzburg.de


    Original publication:

    Reversible magnetic switching of high-spin molecules on a giant Rashba surface. Jens Kügel, Michael Karolak, Andreas Krönlein, David Serrate, Matthias Bode & Giorgio Sangiovanni. npj Quantum Materials


    More information:

    https://doi.org/10.1038/s41535-018-0126-z Zur Originalpublikation


    Images

    Ein flaches Molekül auf einer Oberfläche aus Bismut- (blau) und Silberatomen (grau). Das zentrale Manganatom (rot) kann seine Position verändern.
    Ein flaches Molekül auf einer Oberfläche aus Bismut- (blau) und Silberatomen (grau). Das zentrale Ma ...
    Grafik: Jens Kügel & Michael Karolak
    None


    Criteria of this press release:
    Journalists, Scientists and scholars
    Physics / astronomy
    transregional, national
    Research results
    German


     

    Ein flaches Molekül auf einer Oberfläche aus Bismut- (blau) und Silberatomen (grau). Das zentrale Manganatom (rot) kann seine Position verändern.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).