idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
11/19/2018 12:36

Mit maschinellen Lernverfahren Anomalien frühzeitig erkennen und Schäden vermeiden

Dipl.-Journalist (TU Dortmund) Michael Krapp Marketing und Kommunikation
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

    Die Analyse der Sensordaten von Maschinen, Anlagen oder Bauwerken ermöglicht es, ungewöhnliche Zustände frühzeitig zu erkennen und so Schäden zu vermeiden. Dazu wird in den Daten nach Auffälligkeiten, sogenannten Anomalien, gesucht. Mittels maschinellen Lernens kann diese Anomalie-Erkennung bereits jetzt zum Teil automatisiert ablaufen.

    Dazu benötigt das System aber zuerst eine stabile Anlernphase, in der es alle möglichen Normalzustände kennenlernt. Bei Windkraftanlagen oder Brücken ist das nur sehr eingeschränkt möglich, da sie unter anderem stark schwankenden Wetterlagen ausgesetzt sind. Darüber hinaus sind in der Regel nur wenige Daten zu anomalen Ereignissen verfügbar. Dadurch kann das System die Ausnahmezustände nicht kategorisieren. Dies wäre aber wichtig, um zu erkennen, wie gefährlich die jeweiligen Normabweichungen sind. Genau diese beiden Probleme sollen im Projekt »Maschinelle Lernverfahren für Stochastisch-Deterministische Multi-Sensor Signale« (MADESI) gelöst werden.

    Mit Hilfe numerischer Simulationen können alle erdenklichen Szenarien annäherungsweise durchgespielt werden. So kann beispielsweise simuliert werden, was passiert, wenn starke Sturmböen auf ein Windrad treffen. Das Monitoring-System könnte dann mit den bei diesen Simulationen erzeugten Daten angelernt werden und anschließend selbstständig Anomalien erkennen und interpretieren.

    Dafür entwickeln die Forscher im Projekt MADESI Verfahren, die Simulationsdaten für maschinelle Lernverfahren nutzbar machen. Dabei soll zum einen die Komplexität der Simulationsdaten verringert werden, damit das Monitoring-System zusätzlich auch mit realen Sensordaten angelernt werden kann. Zum anderen will das Konsortium auch die Interpretierbarkeit der Monitoring-Daten erhöhen. »Um das zu erreichen, arbeiten wir bei SCAI unter anderem an Data-Mining-Methoden, mit denen wir Muster in den Szenario-Daten erkennen«, erklärt Projektleiter Prof. Dr. Jochen Garcke, Abteilungsleiter »Numerische datenbasierte Vorhersage« bei Fraunhofer SCAI. Dabei suche man auch nach Merkmalen für Schädigungsvorgänge oder für das Erkennen von Eis auf Windrädern.

    Neben SCAI und der Technischen Universität Darmstadt sind auch die Unternehmen Weidmüller Monitoring Systems und ZF Friedrichshafen beteiligt. Letztere stellen echte Sensordaten zur Verfügung, um die neu entwickelten methodischen Ansätze zu testen. Am 21. November 2018 wollen sich die Mitwirkenden auf Schloss Birlinghoven zum Auftakttreffen versammeln. Gefördert wird das dreijährige Projekt durch das Programm »IKT 2020 – Forschung für Innovationen« des Bundesministeriums für Bildung und Forschung (BMBF).


    Contact for scientific information:

    Ansprechpartner:
    Prof. Dr. Jochen Garcke
    Abteilungsleiter »Numerische datenbasierte Vorhersage«
    Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI, Schloss Birlinghoven, 53754 Sankt Augustin
    Telefon +49 2241 14-2286, Fax +49 2241 14-2460
    E-Mail: jochen.garcke@scai.fraunhofer.de


    Original publication:

    https://www.scai.fraunhofer.de/ndv


    Images

    Was passiert, wenn starke Windböen auf ein Windrad treffen?
    Was passiert, wenn starke Windböen auf ein Windrad treffen?
    Source: © MEV-Verlag – Jonas Krüger / Fraunhofer SCAI

    Projektlogo
    Projektlogo
    Source: © Fraunhofer SCAI


    Criteria of this press release:
    Business and commerce, Journalists, Scientists and scholars
    Construction / architecture, Information technology, Mathematics, Mechanical engineering
    transregional, national
    Research projects, Transfer of Science or Research
    German


     

    Was passiert, wenn starke Windböen auf ein Windrad treffen?


    For download

    x

    Projektlogo


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).