idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
12/06/2018 12:41

Drei Komponenten auf einem Chip

Andrea Mayer-Grenu Abteilung Hochschulkommunikation
Universität Stuttgart

    Wissenschaftlern der Universität Stuttgart und des Karlsruher Institutes für Technologie (KIT gelingt wichtige Weiterentwicklung auf dem Weg zum Quantencomputer

    Quantencomputer sollen bestimmte Rechenprobleme einmal sehr viel schneller lösen können als ein klassischer Computer. Einer der vielversprechendsten Ansätze basiert dabei auf der Verwendung einzelner Photonen zur Übertragung und Verarbeitung von Quanteninformation. Wissenschaftlern der Universität Stuttgart und des Karlsruher Institutes für Technologie (KIT) ist es erstmals gelungen, drei notwendige Hauptkomponenten (Einzelphotonenquellen, Strahlteiler und Einzelphotonendetektoren) auf einem einzigen Chip zu integrieren und diesen auf dem Level einzelner Photonen zu betreiben. Dieses Experiment demonstriert die Funktionstüchtigkeit der grundlegenden Komponenten und legt den Grundstein für komplizierte Systeme. Die Ergebnisse wurden in den „Nano Letters“ veröffentlicht.

    Im Gegensatz zur weit verbreiteten Siliziumtechnologie wurde das Experiment auf Galliumarsenid-Basis (GaAs) durchgeführt. Dies ermöglicht die direkte Einbindung von nanometergroßen Strukturen, sogenannten Quantenpunkten (englisch: quantum dots, QDs), welche als effiziente On-Demand-Quellen von Einzelphotonen dienen. Zusätzlich erlaubt die GaAs-Plattform, die Einzelphotonen zu optischen Logik-Schaltkreisen und speziellen Detektoren aus supraleitenden Nanodrähten zu leiten, welche auf demselben Chip platziert werden können. Im vorgestellten Experiment wurden von einem optisch gepumpten Quantenpunkt emittierte Einzelphotonen in einem photonischen Wellenleiter geführt und von einem Strahlteiler in zwei mit jeweils einem Detektor ausgerüstete Wellenleiterarme aufgeteilt.

    „Eine der bisherigen Herausforderungen in einem solchen komplett auf einem Chip durchgeführten Experiment war die Nähe des Anregungslasers zu den Detektoren auf dem Chip“, erklärt Mario Schwartz. Der Doktorand am Institut für Halbleiteroptik und Funktionelle Grenzflächen (IHFG) der Universität Stuttgart hat über die letzten Jahre an einem Grundsatz-Experiment gearbeitet, um zu zeigen, dass alle Hauptkomponenten auf einem einzigen photonischen Chip kombiniert werden können. Das Projekt wurde in enger Zusammenarbeit mit Ekkehart Schmidt durchgeführt, einem Doktoranden des KIT, der ein Experte für das Design und die Implementierung der On-Chip Detektoren ist. „Die Detektoren können nicht unterscheiden, welche Photonen vom Laser und welche vom Quantenpunkt kommen, was zu unerwünschten Detektionen führt“, hebt Schmidt hervor.

    Den Wissenschaftlern ist es gelungen, den Einfluss der Laserphotonen deutlich zu verringern, indem sie reflektierende Metallschichten auf dem Chip platzierten. Diese Idee ermöglichte es, die quantenmechanische Natur der QD-Emission zu zeigen, wobei nur die On-Chip Komponenten verwendet wurden. „Das erfolgreiche Experiment ist ein wichtiger Schritt in die richtige Richtung und zeigt das Potential von komplett integrierten photonischen Schaltkreisen mit allen Hauptkomponenten auf einem einzigen Chip. Wir sehen klare Möglichkeiten, die Komplexität des Chips in naher Zukunft zu erhöhen“, sagt Prof. Dr. Peter Michler, der Leiter des IHFG der Universität Stuttgart.


    Contact for scientific information:

    Prof. Dr. Peter Michler, Mario Schwartz, Florian Hornung, Universität Stuttgart, Institut für Halbleiteroptik und Funktionelle Grenzflächen, Tel.:+49 (0)711/685-64660, p.michler@ihfg.uni-stuttgart.de


    Original publication:

    Mario Schwartz, Ekkehart Schmidt, Ulrich Rengstl, Florian Hornung, Stefan Hepp, Simone L. Portalupi, Konstantin llin, Michael Jetter, Michael Siegel, and Peter Michler: Fully On-Chip Single-Photon Hanbury-Brown and Twiss Experiment on a Monolithic Semiconductor–Superconductor Platform, Nano Letters, 2018, 18 (11), pp 6892–6897


    More information:

    https://pubs.acs.org/doi/10.1021/acs.nanolett.8b02794


    Images

    Photonischer Schaltkreis, in dem Einzelphotonen geführt und auf zwei Wellenleiter-Arme aufgeteilt werden.
    Photonischer Schaltkreis, in dem Einzelphotonen geführt und auf zwei Wellenleiter-Arme aufgeteilt we ...
    Universität Stuttgart/ Mario Schwartz
    None


    Criteria of this press release:
    Journalists, Scientists and scholars
    Information technology, Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Photonischer Schaltkreis, in dem Einzelphotonen geführt und auf zwei Wellenleiter-Arme aufgeteilt werden.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).