idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
12/13/2018 13:25

Biologists shed new light on an old question

Linda Koffmar, Press Officer at Uppsala University Kommunikationsavdelningen / Communications Department
Schwedischer Forschungsrat - The Swedish Research Council

    For nearly 100 years biologists have argued about how exactly natural selection can possibly work. If nature selects the individuals with the best genes then why aren’t all organisms the same? What maintains the genetic variation that natural selection acts upon, the genetic variation that has ultimately led to the spectacular diversity of life on Earth today? Recent findings made at Uppsala University suggest that the answer could be sex.

    Evolutionary genetic theory shows that genetic variation can be maintained when selection favors different versions of the same genes in males and females – an inevitable outcome of having separate sexes. That is, for many genes there may not be a universally ‘best’ version, but rather one is best for males and one is best for females. This is known as sexually antagonistic genetic variation, but it might only be maintained under a narrow set of conditions, limiting its prevalence in nature. However, Dr. Karl Grieshop and Professor Göran Arnqvist’s study, published in PLoS Biology, may change this view.

    “One of the simplest ways for sexually antagonistic selection to maintain genetic variation in fitness is via sex-specific dominance reversal, where neither version of a gene is always dominant or recessive, but rather the version that benefits a given sex is also dominant in that sex. So, whether a given version of a gene is dominant or recessive to the other will depend upon which sex it is in,” says Dr. Karl Grieshop.

    This mechanism was met with early skepticism, but has seen recent theoretical and empirical support.

    Grieshop and Arnqvist have now provided the first evidence of sex-specific dominance reversal for fitness. Using a panel of genetic strains of a seed beetle population that Grieshop studied throughout his PhD, and analyzing crosses among these strains, they could determine which strains harbored genetic variation that was dominant to the others’. Further, they could do this with regard to male fitness and female fitness separately. When they ranked the strains according to their relative dominance over one another they found that strains tending to be dominant over other strains with regard to male fitness also tended to be recessive to other strains with regard to female fitness, and vice versa. Thus, whether the genetic variation for fitness in each of their strains was dominant or recessive to that of other strains depended, oppositely, on whether it was in a male or a female.

    The pattern suggests that sex-specific dominance reversal for fitness is a strong and common phenomenon throughout the genome in their study population.

    Dr. Grieshop defended his PhD at Uppsala University’s Institute for Ecology and Genetics (IEG) in September of 2017. He is now at the University of Toronto’s Department of Ecology and Evolutionary Biology as a Faculty of Arts and Science Postdoctoral Fellow, and he is a recent recipient of an International Postdoctoral Fellowship from the Swedish Research Council (VR), which will extend his stay in Toronto before returning him Sweden. Professor Göran Arnqvist – Grieshop’s PhD supervisor – is the chair of the Animal Ecology program at IEG, and the study was funded by his research grants from European Research Council and VR.


    Contact for scientific information:

    Dr. Karl Grieshop
    karlgrieshop@gmail.com
    +1 647 230 5077


    Original publication:

    Grieshop, K., & Arnqvist, G. (accepted for PLoS Biology). Sex-specific dominance reversal of genetic variation for fitness. DOI: 10.1371/journal.pbio.2006810

    Related articles:
    Connallon T. & Chenoweth SF. (upcoming PLoS Biology Primer). Dominance reversals and the maintenance of genetic variation for fitness.


    Images

    Criteria of this press release:
    Journalists
    Biology
    transregional, national
    Research results
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).