idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
01/08/2019 09:23

Entwicklung eines grösseren Gehirns

Katrin Boes Presse und Öffentlichkeitsarbeit
Max-Planck-Institut für molekulare Zellbiologie und Genetik

    Ein Gen, das nur der Menschen besitzt und das in der Großhirnrinde aktiv ist, kann das Gehirn eines Frettchens vergrößern.

    Das menschliche Gehirn verdankt sein charakteristisches, gefaltetes Aussehen seiner äußeren Schicht, der Großhirnrinde. Während der Evolution des Menschen vergrößerte sich der Neocortex, der evolutionär jüngste Teil der Großhirnrinde, erheblich und musste sich falten, um in den begrenzten Raum der Schädelhöhle zu passen. Der menschliche Neokortex ermöglicht höhere kognitive Fähigkeiten wie das Denken oder die Sprache. Aber wie ist der menschliche Neokortex so groß geworden? Die Antwort könnte in Genen liegen, die nur dem Menschen eigen sind, wie beispielsweise das Gen ARHGAP11B. Forscher des Max-Planck-Instituts für molekulare Zellbiologie und Genetik (MPI-CBG) in Dresden fanden nun heraus, dass dieses menschenspezifische Gen bei Frettchen eine Vergrößerung des Neokortex bewirken kann. ARHGAP11B veranlasst neuronale Vorläuferzellen dazu, über einen längeren Zeitraum hinweg mehr dieser Zellen zu bilden. Das Ergebnis ist ein vergrößerter Neokortex. Die Forscher veröffentlichten ihre Ergebnisse in der Fachzeitschrift eLife.

    Der menschliche Neokortex ist etwa dreimal so groß wie der unserer nächsten Verwandten, der Schimpansen, und ist der Sitz vieler höherer kognitiver Funktionen, wie unsere Sprache oder die Fähigkeit zu lernen. Eine Schlüsselfrage für Wissenschaftler ist, wie während der Evolution des Menschen der Neocortex so groß wurde. In einer Studie aus dem Jahr 2015 hatte das Forscherteam um Wieland Huttner, Direktor und Forschungsgruppenleiter am MPI-CBG, festgestellt, dass Mäuse unter dem Einfluss des human-spezifischen Gens ARHGAP11B im embryonalen Neokortex viel mehr neuronale Vorläuferzellen produzieren und sogar ihren normalerweise glatten Neokortex falten können. Diese Ergebnisse deuteten darauf hin, dass das Gen ARHGAP11B eine Schlüsselrolle bei der evolutionären Expansion des menschlichen Neokortex spielen könnte.

    Es gibt zwei Arten von neuronalen Vorläuferzellen im Neokortex von Säugetieren: apikale und basale. Ein bestimmter Typ der letzteren, die sogenannten basalen radialen Gliazellen, sind eine Hauptursache für das Wachstum des Neokortex während der embryonalen Entwicklung. Mäuse besitzen nur sehr wenige dieser Zellen. Daher sind Mäuse ungeeignet, um zu untersuchen, ob das human-spezifische Gen ARHGAP11B durch seine Wirkung auf basale radiale Gliazellen tatsächlich eine Vergrößerung des Neokortex bewirken kann. Ein Forscherteam der Forschungsgruppe von Wieland Huttner untersuchte nun, was ARHGAP11B im Gehirn von Frettchen bewirken würde. Frettchen haben einen größeren Neokortex als Mäuse und besitzen mehr basale radiale Gliazellen. Der Erstautor der Studie, Nereo Kalebic, erklärt, was er dabei beobachten konnte: „Bei Frettchen hat ARHGAP11B die Anzahl der basalen radialen Gliazellen deutlich erhöht. Es verlängerte auch das Zeitfenster, in dem die basalen radialen Gliazellen Neurone produzierten. Infolgedessen enthielten diese Frettchen-Hirne mehr Neurone und hatten somit einen größeren Neokortex.“ Diese Ergebnisse deuten darauf hin, dass ARHGAP11B eine ähnliche Rolle bei der Entwicklung des menschlichen Gehirns spielen könnte. Diese Studie liefert auch den ersten Beweis dafür, dass ein human-spezifisches Gen die Bildung von mehr basalen radialen Gliazellen in einem gefalteten Neokortex auslösen kann.

    Wieland Huttner, der die Studie betreut hat, gibt einen Ausblick: „Wir müssen weitere Experimente durchführen, um herauszufinden, ob die Frettchen mit einem größeren Neokortex auch eine verbesserte kognitive Leistungsfähigkeit aufweisen. Wenn ja, könnten solche Studien neue Einblicke in die menschliche Kognition ermöglichen.“


    Contact for scientific information:

    Wieland Huttner
    +49 (0) 351 210 1500
    huttner@mpi-cbg.de

    Nereo Kalebic
    +49 (0) 351 210 2516
    kalebic@mpi-cbg.de


    Original publication:

    Nereo Kalebic, Carlotta Gilardi, Mareike Albert, Takashi Namba, Katherine R Long, Milos Kostic, Barbara Langen, Wieland B Huttner: “Human-specific ARHGAP11B induces hallmarks of neocortical expansion in developing ferret neocortex” eLife, 28. November, 2018.


    Images

    Das Bild zeigt das sich entwickelnde Gehirn eines Frettchens. Magenta markiert Gliazellen und zeigt deutlich die äußere Kontur des Gehirns. Der grüne Bereich enthält Neurone, die ARHGAP11B enthalten.
    Das Bild zeigt das sich entwickelnde Gehirn eines Frettchens. Magenta markiert Gliazellen und zeigt ...
    Kalebic / Gilardi / MPI-CBG
    None


    Criteria of this press release:
    Journalists
    Biology
    transregional, national
    Research results
    German


     

    Das Bild zeigt das sich entwickelnde Gehirn eines Frettchens. Magenta markiert Gliazellen und zeigt deutlich die äußere Kontur des Gehirns. Der grüne Bereich enthält Neurone, die ARHGAP11B enthalten.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).