idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
01/16/2019 10:50

Flying Optical Cats for Quantum Communication

Jessica Gruber Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik

    Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

    In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken experiment is a cat that is simultaneously dead and alive. Since Schrödinger proposed his ‘cat paradox’, physicists have been thinking about ways to create such superposition states experimentally. A group of researchers led by Gerhard Rempe, Director of the Division of Quantum Dynamics at the Max Planck Institute of Quantum Optics, has now realized an optical version of Schrödinger’s thought experiment in the laboratory. In this instance, pulses of laser light play the role of the cat. The insights gained from the project open up new prospects for enhanced control of optical states, that can in the future be used for quantum communications.

    “According to Schrödinger‘s idea, it is possible for a microscopic particle, such as a single atom, to exist in two different states at once. This is called a superposition. Moreover, when such a particle interacts with a macroscopic object, they can become ‘entangled’, and the macroscopic object may end up in superposition state. Schrödinger proposed the example of a cat, which can be both dead and alive, depending on whether or not a radioactive atom has decayed – a notion which is in obvious conflict with our everyday experience,” Professor Rempe explains.

    In order to realize this philosophical gedanken experiment in the laboratory, physicists have turned to various model systems. The one implemented in this instance follows a scheme proposed by the theoreticians Wang and Duan in 2005. Here, the superposition of two states of an optical pulse serves as the cat. The experimental techniques required to implement this proposal – in particular an optical resonator – have been developed in Rempe’s group over the past few years.

    The researchers involved in the project were initially skeptical as to whether it would be possible to generate and reliably detect such quantum mechanically entangled cat states with the available technology. The major difficulty lay in the need to minimize optical losses in their experiment. Once this was achieved, all measurements were found to confirm Schrödinger’s prediction. The experiment allows the scientists to explore the scope of application of quantum mechanics and to develop new techniques for quantum communication.

    The laboratory at the Max Planck Institute in Garching is equipped with all the tools necessary to perform state-of-the-art experiments in quantum optics. A vacuum chamber and high-precision lasers are used to isolate a single atom and manipulate its state. At the core of the set-up is an optical resonator, consisting of two mirrors separated by a slit only 0.5 mm wide, where an atom can be trapped. A laser pulse is fed into the resonator and reflected, and thereby interacts with the atom. As a result, the reflected light gets entangled with the atom. By performing a suitable measurement on the atom, the optical pulse can be prepared in a superposition state, just like that of Schrödinger’s cat. One special feature of the experiment is that the entangled states can be generated deterministically. In other words, a cat state is produced in every trial.

    “We have succeeded in generating flying optical cat states, and demonstrated that they behave in accordance with the predictions of quantum mechanics. These findings prove that our method for creating cat states works, and allowed us to explore the essential parameters,” says PhD student Stephan Welte.

    “In our experimental setup, we have succeeded not only in creating one specific cat state, but arbitrarily many such states with different superposition phases – a whole zoo, so to speak. This capability could in the future be utilized to encode quantum information,” adds Bastian Hacker, who is also a doctoral student at the Institute.

    “Schrödinger‘s cat was originally enclosed in a box to avoid any interaction with the environment. Our optical cat states are not enclosed in a box. They propagate freely in space. Yet they remain isolated from the environment and retain their properties over long distances. In the future we could use this technology to construct quantum networks, in which flying optical cat states transmit information,” says Gerhard Rempe. This underlines the significance of his group’s latest achievement.


    Contact for scientific information:

    Prof. Dr. Gerhard Rempe
    Max Planck Institute of Quantum Optics
    Hans-Kopfermann-Str. 1, 85748 Garching
    Phone: +49 89 32905 701
    Email: gerhard.rempe@mpq.mpg.de

    Bastian Hacker
    Max Planck Institute of Quantum Optics
    Hans-Kopfermann-Str. 1, 85748 Garching
    Phone: +49 89 32905 246
    Email: bastian.hacker@mpq.mpg.de

    Stephan Welte
    Max Planck Institute of Quantum Optics
    Hans-Kopfermann-Str. 1, 85748 Garching
    Phone: +49 89 32905 244
    Email: stephan.welte@mpq.mpg.de


    Original publication:

    Bastian Hacker, Stephan Welte, Severin Daiss, Armin Shaukat, Stephan Ritter, Lin Li, Gerhard Rempe
    Deterministic creation of entangled atom-light Schrödinger-cat states
    Nature Photonics, January 14th, 2019
    DOI: 10.1038/s41566-018-0339-5


    More information:

    http://www.mpq.mpg.de


    Images

    An atom is trapped in the resonator between two mirrors (left). A reflected light pulse gets entangled with the atom and may fly freely as a superimposed cat state (right).
    An atom is trapped in the resonator between two mirrors (left). A reflected light pulse gets entangl ...
    Bastian Hacker, Max Planck Institute of Quantum Optics (MPQ)
    None


    Criteria of this press release:
    Journalists
    Physics / astronomy
    transregional, national
    Research results
    English


     

    An atom is trapped in the resonator between two mirrors (left). A reflected light pulse gets entangled with the atom and may fly freely as a superimposed cat state (right).


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).