idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
02/19/2019 15:37

Novel coating enables hip implants to grow in better and prevents aseptic inflammation

Susanne Krause, M.A. Externe und interne Kommunikation
Fraunhofer-Institut für Produktionstechnologie IPT

    The number of hip prostheses in the EU has risen steadily over the past ten years – most notably in Austria and Germany with 300 implants per 100,000 inhabitants. The frequency of aseptic inflammatory processes between bone and implant, accompanied with loosening of the prosthesis, has increased, resulting in a shortened lifetime of the hip replacement. A consortium of eleven research and industrial partners led by the Fraunhofer Institute for Production Technology IPT has now joined forces to develop a new generation of endoprosthesis for the treatment of aseptic loosening disease.

    EVPRO – short for: Extracellular Vesicles Promoted Regenerative Osseointegration – aims to counteract the shortened lifetime and to reduce the risk of inflammation of hip revision prostheses. The eleven project partners from four countries intend to ensure mobility for elderly patients and improve their quality of life and well-being by diminishing problems associated with implanted joint prosthesis and by reducing the number and frequency of subsequent medical treatments. The partners expect that EVPRO's results lead to a significant decrease in aseptic loosening in joint replacement.

    Biologically active coating enables better implant ingrowth and causes less complications

    The objective of EVPRO is to devise innovative biologically active coatings for hip revision endoprosthesis, which are able to control inflammation at the biointerface of the endoprosthesis and promote bone regeneration. The EVPRO coating combines a novel bioinstructive, adaptive nano-functionalized degradable biomaterial homing extracellular vesicles incorporated in a non-degradable bone-instructive microporous and nano-roughened TiO2 surface. These coatings are applied at the interface between implant and inflamed tissue, to perceive inflammation and modulate it in a proportional, self-regulating manner. Additionally, they instruct bone forming cells, so-called osteoblasts, to migrate into the coating to improve osseointegration resulting in a better healing and an increased lifetime of the implant.

    In the long term, researchers expect that the number of repeated operations to replace worn implants will decrease, having a direct positive impact on the duration of the necessary hospital stay and the prescription of expensive medication. The results of the EVPRO research project can thus support the European Union's objectives on active ageing in society and lead to significant improvements in the quality of life for hundreds of thousands of citizens in the EU and beyond.

    Dr. Jochen Salber from the Clinic of Surgery of the UMC Knappschaftskrankenhaus Bochum; Hospital of the Ruhr-University Germany says: “The EVPRO technology is still at an early stage but it has the potential to revolutionize medical technology in implantology improving therapies for patients suffering from aseptic endoprosthesis loosening. In addition, other clinical areas suffering from high inflammation rates might also benefit greatly from the project results.”

    Development of market-ready medical products

    In coordination with the consortium of European universities and partners in medical device and biotechnology industries, the Fraunhofer IPT will focus on building a market leading portfolio of products, required for application in the next generation of hip revision endoprosthesis and beyond.

    In addition to companies using the newly developed EVPRO technology directly, the partners are already working on concepts for sales and distribution along the entire value chain. EVPRO considers process steps of the manufacturing of implants as well as preclinical studies and later end users. As soon as the EVPRO-implants are market-ready, the partners intend to evaluate the possibility of a comparatively simple transfer from EVPRO hip implant coatings to primary and secondary knee implants, which bear a market potential of more than 3.2 million in the EU and the US per year. As a logical extension for a later stage utilization analysis, further joint replacements such as shoulder, ankle or elbow replacements could also directly benefit from the EVPRO technology.

    Additionally, clinical areas connected with high inflammation rates for further EV-loaded products such as intramedullary nails or dental implants, connectors like screws or nails, and wound dressings for chronic wounds or serious burns represent a promising and broad chance for further exploitation of the EVPRO technology.

    Partners in the EVPRO consortium

    - University Hospital Essen, Essen, Germany, (Bernd Giebel, Verena Börger)
    - Lonza Netherlands B.V., Maastricht, the Netherlands, (Bart van Dijk, Birgit Nelsen-Salz)
    - Dublin City University, Dublin, Ireland, (Damien King, Paul Cahill)
    - Trinity College Dublin, Dublin, Ireland, (Lorraine O´Discroll)
    - Leibniz Institute for interactive materials, Aachen, Germany, (Barbara Dittrich, Cesar Rodriguez-Emmenegger)
    - University Maastricht, Maastricht, the Netherlands, (Daniel Molin, Nynke van den Akker)
    - Meotec GmbH & Co. KG, Aachen, Germany, (Christoph Ptock)
    - Stryker B.V., Amsterdam, the Netherlands, (Eric Garling)
    - Politecnico di Torino, Turin, Italy, (Gianluca Ciardelli, Valeria Chiono)
    - Knappschaftskrankenhaus Bochum, Bochum, Germany, (Jochen Salber)

    The EVPRO project started in January 2019 and is funded by the European Union within the Horizon 2020 programme with a total of 5.8 million euros.


    Contact for scientific information:

    Dr. rer. nat. Claudia Skazik-Voogt

    Fraunhofer Institute for Production Technology IPT
    Steinbachstr. 17
    52074 Germany

    Phone +49 241 8904-428
    claudia.skazik-voogt@ipt.fraunhofer.de


    More information:

    https://www.ipt.fraunhofer.de/en/Press/Pressreleases/20190219_novel-coating-enab...


    Images

    Example for Hip stem implant (Accolade II)
    Example for Hip stem implant (Accolade II)
    Photo: Stryker European Operations B.V.
    None


    Criteria of this press release:
    Business and commerce, Journalists, Scientists and scholars
    Biology, Mechanical engineering, Medicine
    transregional, national
    Cooperation agreements, Research projects
    English


     

    Example for Hip stem implant (Accolade II)


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).