Jet/Hüllen-Rätsel in Gravitationswellenereignis gelöst

idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
idw-Abo
Medienpartner:
Wissenschaftsjahr


Share on: 
02/21/2019 20:00

Jet/Hüllen-Rätsel in Gravitationswellenereignis gelöst

Norbert Junkes Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Radioastronomie

    Ein internationales Forscherteam unter Beteiligung von Astronomen des Bonner Max-Planck-Instituts für Radioastronomie hat Radioteleskope auf fünf Kontinenten miteinander verknüpft, um das Vorhandensein eines stark gebündelten Materiestrahls, eines sogenannten Jets zu beweisen, der vom Überrest des bisher einzigen bekannten Gravitationswellenereignisses ausgeht, bei dem zwei Neutronensterne miteinander verschmolzen. Bei den Beobachtungen im weltweiten Netzwerk spielte das 100-m-Radioteleskop in Effelsberg eine wichtige Rolle.

    Im August 2017 wurde zum ersten Mal die Verschmelzung zweier sehr kompakter Sternüberreste, sogenannter Neutronensterne, beobachtet, deren vorhergehende Umkreisung auf immer engerer Bahn Gravitationswellen aussandte, die von den LIGO-Detektoren in Amerika und dem VIRGO-Detektor in Europa registriert wurden. Neutronensterne sind extrem verdichtete Sterne mit ungefähr der gleichen Masse wie unsere Sonne, aber das Ganze konzentriert auf ein Volumen nicht größer als eine Stadt wie Köln. Die Verschmelzung der Neutronensterne erfolgte in einer 130 Millionen Lichtjahre entfernten Galaxie in Richtung des Sternbilds Hydra (Wasserschlange) und ist das erste Ereignis dieser Art, das von der Erde aus beobachtet werden konnte.

    Astronomen verfolgten dieses Ereignis und die weitere Entwicklung des Systems über das gesamte elektromagnetische Spektrum, von Röntgen- und Gamma- bis zu Radiowellenlängen. Zweihundert Tage nach der Verschmelzung, am 12. März 2018, kombinierte ein internationales Forscherteam unter der Leitung von Giancarlo Ghirlanda vom Nationalen Institut für Astrophysik in Italien (INAF) die Daten von dreiunddreißig Radioteleskopen auf fünf Kontinenten (Europa, Afrika, Asien, Ozeanien, und Nordamerika), um zu zeigen, dass ein gebündelter Materialstrahl (ein sogenannter Jet) von dem Überrest der Verschmelzung ausgeht.

    Die beobachtete Verschmelzung von Neutronensternen hat es zum ersten Mal möglich gemacht, ein Gravitationswellenereignis mit einem Objekt in Verbindung zu bringen, das Licht (oder allgemeiner: elektromagnetische Strahlung) aussendet. Damit konnten wissenschaftliche Theorien bestätigt werden, die bereits jahrzehntelang diskutiert wurden und es zeigte sich eine Verbindung der Verschmelzung von Neutronensternen mit einer der energiereichsten Explosionen im Universum, nämlich Gammastrahlungsausbrüchen. Nach der Verschmelzung wird eine riesige Menge von Material in den Weltraum hinausgeschleudert und bildet eine Materiescheibe um das Zentrum. Es bleiben allerdings noch Fragen, die nicht durch die vorherigen Beobachtungen beantwortet werden konnten.

    „Wir erwarteten, dass ein Teil dieses Materials durch einen stark gebündelten Jet ausgestoßen wird, aber es war nicht klar, ob der Jet die umgebende Hülle durchstoßen könnte”, erklärt Girlanda. „Es gab zwei konkurrierende Szenarien: In einem Fall bricht der Jet nicht durch die Hülle, sondern führt zu einer sich ausdehnenden Blase, wo er auf das Hüllenmaterial trifft. Im anderen Fall durchstößt der Jet erfolgreich die Hülle und breitet sich dann weiter in den Raum aus.” führt Tiziana Venturi (INAF) aus. Nur durch hochempfindliche und hochaufgelöste Bilder der Quelle im Radiobereich können die beiden Fälle voneinander unterschieden werden. Um dies zu erreichen, benutzten die Astrophysiker eine Technik, bei der Radioteleskope auf der ganzen Welt zu einem großen virtuellen Teleskop kombiniert werden.

    Insgesamt dreiunddreißig Radioteleskope kamen bei den Beobachtungen zum Einsatz. Sie umfassen das europäischen VLBI-Netzwerk mit Teleskopen in Spanien, Großbritannien, den Niederlanden, Deutschland, Italien, Schweden, Polen, Lettland, Südafrika, Russland und China, weiterhin e-MERLIN in Großbritannien, das Australian Long Baseline Array in Australien und Neuseeland, sowie das „Very Long Baseline Array“ in den USA.

    „Dabei spielte unser 100-m-Radioteleskop in Effelsberg aufgrund seiner hohen Empfindlichkeit und exzellenten Leistungsfähigkeit eine entscheidende Rolle“, sagt
    Carolina Casadio, ein Mitglied des Forschungsteams vom Bonner Max-Planck-Institut für Radioastronomie (MPIfR).

    Die Daten aller dieser Teleskope wurde dann zum „Joint Institute for VLBI-ERIC“ (JIVE) in den Niederlanden gesandt und dort zu einem Datensatz verbunden. Dadurch erhielten die Astrophysiker ein Bild mit einer Auflösung, die hoch genug wäre, um einen Menschen auf dem Mond zu erkennen. In der gleichen Analogie würde die scheinbare Größe der sich ausdehnende Blase einem Truck auf dem Mond entsprechen, während die scheinbare Größe des Jets viel kleiner wäre.

    „Durch den Vergleich der beobachteten Bilder mit den Bildern von theoretischen Modellen haben wir herausgefunden, dass nur ein erfolgreicher Jet kompakt genug ist, um die beobachtete Größe der Quelle zu erklären”, sagt Om Sharan Salafia (INAF). Das Team fand heraus, dass der Jet so viel Energie enthält wie alle Sterne in unserer Galaxie zusammen in einem Jahr produzieren. „Und all diese Energie ist auf ein Gebiet von weniger als einem Lichtjahr begrenzt”, ergänzt Zsolt Paragi (JIVE).

    „Innerhalb von Europa nutzen wir unser RadioNet-Konsortium für den effizienten Einsatz der Radioteleskope in unseren Mitgliedsstaaten. Die hier vorgestellten Beobachtungen kombinieren Radioteleskope nicht nur in Europa, sondern weltweit. Es erfordert einen sehr gut koordinierten Einsatz der beteiligten Observatorien und Einrichtungen, um derart herausragende Ergebnisse zu erzielen“, erklärt Anton Zensus, Direktor am MPIfR und Koordinator des RadioNet-Konsortiums.

    ---------------------------------------------------------

    Very Long Baseline Interferometrie (VLBI) ist eine astronomische Beobachtungsmethode, bei der eine Vielzahl von Radioteleskopen, die über große Entfernungen auf der Erde verteilt sind, die gleiche Region am Himmel gleichzeitig beobachten. Die Daten von den Einzelteleskopen werden dann in einem „Korrelator“ (z.B. bei JIVE oder am MPIfR in Bonn) miteinander verbunden und ergeben Bilder mit höherer Winkelauflösung als bei den leistungsfähigsten optischen Teleskopen.

    Das europäische VLBI-Netzwerk (EVN) stellt eine interferometrische Verbindung von Radioteleskopen in Europa, Asien, Südafrika sowie Nord- und Südamerika dar. Das EVN wurde 1980 gegründet und bildet heute das weltweit empfindlichste VLBI-Netzwerk mit über 20 Einzelteleskopen, darunter einige der leistungsfähigsten Radioteleskope überhaupt. Das EVN wird vom Europäischen Konsortium für VLBI organisiert und umfasst insgesamt 15 Institute, darunter auch das Max-Planck-Institut für Radioastronomie in Bonn.

    Insgesamt dreiunddreißig Radioteleskope waren an den hier beschriebenen Beobachtungen beteiligt: Yebes (Spanien), Jodrell Bank und e-MERLIN (beide Großbritannien), Westerbork (Niederlande), Effelsberg (Deutschland), Medicina und Noto (beide Italien), Onsala (Schweden), Toruń (Polen), Irbene (Lettland), Hartebeesthoek (Südafrika), Zelenchukskaya und Badary (beide Russland), Urumqi, Kunming und Tianma (China), Badary (Russia), Ceduna, Hobart, Parkes und Mopra sowie das „Australia Telescope Compact Array“ (alle Australien), Warkworth (Neuseeland), Mauna Kea, Brewster, Owens Valley, Kitt Peak, Pie Town, Los Alamos, Fort Davis, North Liberty, Green Bank, Hancock, St. Croix sowie das „Karl G. Jansky Very Large Array“ (alle USA).

    Das Forschungsprojekt wurde im Rahmen des Horizon 2020 Forschungs- und Innovationsprogramms der Europäischen Kommission unter der Förderungsnummer 730562 (RadioNet) unterstützt.


    Contact for scientific information:

    Dr. Carolina Casadio,
    Max-Planck-Institut für Radioastronomie, Bonn.
    Fon: +49 228 525-473
    E-mail: casadio@mpifr-bonn.mpg.de

    Prof. Dr. Eduardo Ros,
    Max-Planck-Institut für Radioastronomie, Bonn.
    Fon: +49 228 525-125
    E-mail: ros@mpifr-bonn.mpg.de


    Original publication:

    „(Re)solving the jet/cocoon riddle of the first gravitational wave electromagnetic counterpart“, G. Ghirlanda, et al., Science, 21. Februar 2019 (DOI: 10.1126/science.aau8815)

    http://science.sciencemag.org/cgi/doi/10.1126/science.aau8815


    More information:

    https://www.mpifr-bonn.mpg.de/pressemeldungen/2019/3


    Criteria of this press release:
    Journalists, Scientists and scholars, Students, Teachers and pupils, all interested persons
    Physics / astronomy
    transregional, national
    Research results
    German


    Interferometrisches Bild der Quelle aus der Verbindung von dreiunddreißig Radioteleskopen auf fünf Kontinenten (Falschfarbenbild mit Quelle als rötlicher Fleck etwas links von der Bildmitte).


    For download

    x

    Das weltweite Netzwerk aller Einrichtungen, die an der vorliegenden Beobachtung teilgenommen haben.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).

    Cookies optimize the use of our services. By surfing on idw-online.de you agree to the use of cookies. Data Confidentiality Statement
    Okay