idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
02/28/2019 12:58

Wie die Maschine die Bedeutung der Pixel erkennt

Till Bayer Abteilung Hochschulkommunikation/Bereich Presse und Information
Friedrich-Schiller-Universität Jena

    Informatiker der Universität Jena erhalten Auszeichnung für neuartiges Verfahren der Bildersuche

    Ob auf einem Foto ein Chihuahua oder ein Muffin abgebildet ist, können wir Menschen auf den ersten Blick problemlos feststellen. Maschinen fällt es dagegen noch immer schwer, den Inhalt oder gar die Stimmung von Bildern zu begreifen. Abhilfe könnte ein Verfahren schaffen, das Björn Barz und Prof. Dr. Joachim Denzler vom Lehrstuhl für Digitale Bildverarbeitung der Universität Jena entwickelt haben. Um einer Künstlichen Intelligenz (KI) die Bedeutung hinter den Pixeln eines Bildes näherzubringen, kombinieren die beiden Informatiker Maschinelles Lernen mit menschlichem Vorwissen. Für diese Forschungsleistung sind sie jetzt im Rahmen einer internationalen Tagung des Institute of Electrical and Electronics Engineers (IEEE) auf Hawaii mit dem „Best Paper Award“ ausgezeichnet worden. Bei der renommierten Konferenz konnten sie sich gegen mehr als 500 andere wissenschaftliche Arbeiten durchsetzen, die eingereicht wurden.

    Suchmaschinen könnten von Jenaer Methode profitieren

    Von der neuen Methode sollen insbesondere Suchmaschinen profitieren, die im Internet angesichts der Verbreitung ständig griffbereiter Kameras eine wachsende Bilderflut durchkämmen müssen. Üblicherweise verwenden diese Suchprogramme Schlüsselwörter, mit deren Hilfe sie die gewaltigen Datenmengen auf Ergebnisse abklopfen. Eine textbasierte Arbeitsweise birgt jedoch Probleme: Einerseits können Suchanfragen mehrdeutig sein und zu völlig falschen Resultaten führen, andererseits werden unzureichend beschriebene Bilder überhaupt nicht gefunden.

    Die beiden Jenaer Informatiker vermeiden solche Engpässe, indem sie im Austausch für die Begriffe eine Analyse des Bildinhaltes selbst vornehmen. „Bilder besitzen den Vorteil, dass sie gegenüber Schlüsselwörtern wesentlich aussagekräftiger sind“, erklärt Björn Barz, Doktorand am Lehrstuhl für Digitale Bildverarbeitung und Erstautor der prämierten Arbeit. „Für die Suchanfrage setzen wir daher auf ein Bild, das der Benutzer zur Verfügung stellt, und ermitteln davon ausgehend Bilder mit ähnlichen Inhalten.“ Herkömmliche Verfahren vergleichen Inhalte anhand visueller Gesichtspunkte wie Farbe, Form und Textur. Die Jenaer Methode bestimmt indes die Ähnlichkeit von Bildern, indem sie menschliches Wissen über die Bedeutung gewisser Dinge in den Lernprozess einer Maschine integriert.

    Informatiker füttern KI mit Bedeutungsketten

    Zur Aufnahme dieses Wissens füttern die Forscher die Künstliche Intelligenz mit Folgen von Zahlen, denen Bedeutungen zugeordnet wurden. Auf diese Weise bringen sie ihr bei, dass die Objekte der Welt in einem hierarchischen Verhältnis zueinanderstehen. Zum Beispiel, dass Chihuahua zur Familie der Hunde gehören, welche ihrerseits der Klasse der Säugetiere und ganz allgemein den Lebewesen unterstehen. Mithilfe solcher Bedeutungsketten versteht das Programm schließlich, dass ein Chihuahua einer Dogge ähnlicher sein muss als einem Muffin. In ersten Tests überzeugte die Methode und führte bei der Bildersuche zu erheblich besseren Ergebnissen.

    Gorillas sind keine Menschen

    „Wir denken, dass dieser Ansatz zur Integration semantischen Vorwissens in maschinelle Lernverfahren auch für andere Anwendungsgebiete fruchtbar gemacht werden kann“, blickt Denzler in die Zukunft. Als Beispiel führt er den Fall einer von Google entwickelten KI an, die in die Kritik geriet, weil sie Menschen mit dunkler Hautfarbe als Gorillas bezeichnete. Die von den Jenaer Informatikern erdachte Methode könnte dabei helfen, solche schwerwiegenden Fehler in Zukunft zu vermeiden.


    Contact for scientific information:

    Prof. Dr. Joachim Denzler
    Institut für Informatik der Friedrich-Schiller-Universität Jena
    Ernst-Abbe-Platz 2, 07743 Jena
    Tel.: 03641 / 946301
    E-Mail: joachim.denzler[at]uni-jena.de


    Original publication:

    Barz B., Denzler J. (2019): Hierarchy-based Image Embeddings for Semantic Image Retrieval. IEEE Winter Conference on Applications of Computer Vision (WACV) 2019, pp. 638-647, doi: 10.1109/WACV.2019.00073


    Images

    Björn Barz, Doktorand am Lehrstuhl für Digitale Bildverarbeitung der Universität Jena und Erstautor der prämierten Arbeit.
    Björn Barz, Doktorand am Lehrstuhl für Digitale Bildverarbeitung der Universität Jena und Erstautor ...
    (Foto: Jan-Peter Kasper/FSU)
    None


    Criteria of this press release:
    Journalists
    Information technology
    transregional, national
    Personnel announcements, Research results
    German


     

    Björn Barz, Doktorand am Lehrstuhl für Digitale Bildverarbeitung der Universität Jena und Erstautor der prämierten Arbeit.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).