idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
03/11/2019 09:58

Infrared Technology for Space, Climate and Security

Anne-Julie Maurer Marketing und Kommunikation
Fraunhofer-Institut für Angewandte Festkörperphysik IAF

    In aerospace, infrared technology provides information about atmospheric compositions of our planet and other exoplanets. Earth observation satellites use detectors to study the climate by using infrared spectroscopy to detect greenhouse gas emissions or other chemical substances in real time. Furthermore, infrared lasers have also become an indispensable tool for medical diagnostics and therapies. To promote these studies and developments, specialists of IR photonics and optoelectronics will meet at the 44th Freiburg Infrared Colloquium. The two-day workshop takes place from March 19-20 at the Fraunhofer Institute for Applied Solid State Physics IAF in Freiburg, Germany.

    More than 100 international representatives from universities, research institutes and industry will partake in the exchange and knowledge transfer at the biannual Infrared Colloquium. »This year’s program includes more than 40 specialist talks on the newest research results, optimized production processes of devices, product developments and applications in different industrial sectors«, says chairman Dr. Robert Rehm. Scientists of Fraunhofer IAF will present their developments in the field of photodetectors and quantum cascade lasers. Seven invited speakers will speak about pioneering topics from the industry.

    Space missions and trace gas analysis

    Infrared detectors are an indispensable tool for earth observation from space and for studies of the processes in our solar system and beyond. Olivier Saint-Pé (Airbus Defence and Space) will give a talk about the criteria and requirements that the next generation of IR sensors and instruments needs to meet for future space missions.

    Another component from infrared technology has already made it to space. The interband cascade laser (»IC laser«) was successfully used by the NASA Rover »Curiosity« to detect methane on Mars. The high-performance IC lasers are characterized by their low energy consumption and are being used for various spectroscopic measurement applications in process and environmental analysis. In his talk, Prof. Dr. Rui Q. Yang (University of Oklahoma), who co-developed the concept of IC lasers in 1994, will review the unique characteristics of this technology and its current state of the art.

    The detection of chemical substances is also the topic of Dr. Johannes Paul Waclawek’s (TU Wien), who will introduce new trace gas sensing methods in the mid-infrared. Gases often pose a threat to human health and the environment, which is why a constant surveillance of smallest traces is necessary. With the help of indirect photoacoustic or photothermal measuring methods, emission, industry and process gases can be detected precociously, and people and the environment can be protected from harm.

    High-resolution and high-performance thermal imaging cameras

    Scientists of Fraunhofer IAF will present various current trends in the field of semiconductor lasers and photodetectors. From the latter, Dr. Frank Rutz shows the newest developments of high-performance matrix and single detectors based on antimonic type-II superlattices and indium gallium arsenide (InGaAs). In the shortwave infrared range, highly sensitive InGaAs based cameras allow for night vision systems that capitalize on atmospheric OH lights. »The superlattice detectors for the mid- and longwave infrared developed at Fraunhofer IAF are unique worldwide. They allow for high-performance thermal imaging cameras with high spatial resolution which either operate in the classic monospectral mode or have the capability of color vision in the infrared«, explains Rehm, head of the business unit »Photodetectors« at Fraunhofer IAF.

    Real-time surveillance with spectroscopy

    In the field of semiconductor lasers, Fraunhofer IAF develops optically pumped semiconductor disk lasers for medical applications and quantum cascade lasers for spectroscopic sensors. Spectroscopy in the mid-infrared is of high importance for the identification of numerous chemical compounds. Every chemical substance absorbs a distinct amount of infrared light, which in turn can be identified like a human fingerprint via optical methods. Real-time surveillance in this spectral range provides valuable information and can be used for a wide range of applications: For instance, for medical purposes, cancer diseases could be diagnosed earlier and the food and pharmaceutical industry could use it to ensure their product quality. The contact-free detection of explosives and toxic substances in real time helps with the on-site detection of hazardous substances to prevent terroristic attacks or to investigate accidents at industrial plants. Dr. Marko Härtelt’s contribution will present the newest results in the field of quantum cascade lasers that have been developed in a joint project between Fraunhofer IAF and Fraunhofer IPMS.

    About the Freiburg Infrared Colloquium

    Already for the 44th time since its founding in 1971, the Freiburg Infrared Colloquium will bring reknown international participants from different economic and scientific sectors together. The two-day workshop offers a unique forum for discussions of current and relevant issues for the development of infrared technology as well as their use in various sectors. The workshop’s aim is the exchange between different players, the strengthening of international collaboration and the promotion of the research and development of infrared technology.


    Original publication:

    https://www.iaf.fraunhofer.de/en/media-library/press-releases/ir-colloquium2019....


    More information:

    https://www.iaf.fraunhofer.de/en.html


    Images

    IR-based airborne surveillance systems allow satellite-based earth observation from space as well as observations of our solar system and beyond.
    IR-based airborne surveillance systems allow satellite-based earth observation from space as well as ...

    Even smallest amounts of gas can be detected with the help of trace gas sensing. This allows an early detection of air pollution.
    Even smallest amounts of gas can be detected with the help of trace gas sensing. This allows an earl ...


    Attachment
    attachment icon Download Press release as PDF

    Criteria of this press release:
    Journalists, Scientists and scholars
    Chemistry, Physics / astronomy
    transregional, national
    Scientific conferences, Transfer of Science or Research
    English


     

    IR-based airborne surveillance systems allow satellite-based earth observation from space as well as observations of our solar system and beyond.


    For download

    x

    Even smallest amounts of gas can be detected with the help of trace gas sensing. This allows an early detection of air pollution.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).